BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 25325258)

  • 1. Automation of a phospho-STAT5 staining procedure for flow cytometry for application in drug discovery.
    Malergue F; van Agthoven A; Scifo C; Egan D; Strous GJ
    J Biomol Screen; 2015 Mar; 20(3):416-21. PubMed ID: 25325258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization and utilization of the SureFire phospho-STAT5 assay for a cell-based screening campaign.
    Binder C; Lafayette A; Archibeque I; Sun Y; Plewa C; Sinclair A; Emkey R
    Assay Drug Dev Technol; 2008 Feb; 6(1):27-37. PubMed ID: 18336085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Human Whole Blood Screening Platform to Monitor JAK/STAT Signaling Using High-Throughput Flow Cytometry.
    Fereshteh MP; Li X; Li S; Fan Y; Zhang R; Farr GA; Kolodin G; Lippy J; Naglich JG; Schieven G; Schweizer L; Zhang L
    J Biomol Screen; 2016 Sep; 21(8):866-74. PubMed ID: 27142718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fully Automated High-Throughput Flow Cytometry Screening System Enabling Phenotypic Drug Discovery.
    Joslin J; Gilligan J; Anderson P; Garcia C; Sharif O; Hampton J; Cohen S; King M; Zhou B; Jiang S; Trussell C; Dunn R; Fathman JW; Snead JL; Boitano AE; Nguyen T; Conner M; Cooke M; Harris J; Ainscow E; Zhou Y; Shaw C; Sipes D; Mainquist J; Lesley S
    SLAS Discov; 2018 Aug; 23(7):697-707. PubMed ID: 29843542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single cell network profiling (SCNP): mapping drug and target interactions.
    Covey TM; Putta S; Cesano A
    Assay Drug Dev Technol; 2010 Jun; 8(3):321-43. PubMed ID: 20158439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated MALDI Target Preparation Concept: Providing Ultra-High-Throughput Mass Spectrometry-Based Screening for Drug Discovery.
    Winter M; Ries R; Kleiner C; Bischoff D; Luippold AH; Bretschneider T; Büttner FH
    SLAS Technol; 2019 Apr; 24(2):209-221. PubMed ID: 30074850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of High-Throughput Flow Cytometry in Early Drug Discovery: An AstraZeneca Perspective.
    Ding M; Clark R; Bardelle C; Backmark A; Norris T; Williams W; Wigglesworth M; Howes R
    SLAS Discov; 2018 Aug; 23(7):719-731. PubMed ID: 29787326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential selectivity of JAK2 inhibitors in enzymatic and cellular settings.
    Yu V; Pistillo J; Archibeque I; Han Lee J; Sun BC; Schenkel LB; Geuns-Meyer S; Liu L; Emkey R
    Exp Hematol; 2013 May; 41(5):491-500. PubMed ID: 23340136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desensitization of the growth hormone-induced Janus kinase 2 (Jak 2)/signal transducer and activator of transcription 5 (Stat5)-signaling pathway requires protein synthesis and phospholipase C.
    Fernández L; Flores-Morales A; Lahuna O; Sliva D; Norstedt G; Haldosén LA; Mode A; Gustafsson JA
    Endocrinology; 1998 Apr; 139(4):1815-24. PubMed ID: 9528967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-content single-cell drug screening with phosphospecific flow cytometry.
    Krutzik PO; Crane JM; Clutter MR; Nolan GP
    Nat Chem Biol; 2008 Feb; 4(2):132-42. PubMed ID: 18157122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moving pictures: imaging flow cytometry for drug development.
    Elliott GS
    Comb Chem High Throughput Screen; 2009 Nov; 12(9):849-59. PubMed ID: 19929790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward high-throughput drug screening on a chip-based parallel affinity separation platform.
    Ohlson S; Duong-Thi MD; Bergström M; Fex T; Hansson L; Pedersen L; Guazotti S; Isaksson R
    J Sep Sci; 2010 Sep; 33(17-18):2575-81. PubMed ID: 20730836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overview of high-throughput screening.
    Entzeroth M; Flotow H; Condron P
    Curr Protoc Pharmacol; 2009 Mar; Chapter 9():Unit 9.4. PubMed ID: 22294406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical screening in zebrafish for novel biological and therapeutic discovery.
    Tan JL; Zon LI
    Methods Cell Biol; 2011; 105():493-516. PubMed ID: 21951544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth hormone- and prolactin-induced proliferation of insulinoma cells, INS-1, depends on activation of STAT5 (signal transducer and activator of transcription 5).
    Friedrichsen BN; Galsgaard ED; Nielsen JH; Møldrup A
    Mol Endocrinol; 2001 Jan; 15(1):136-48. PubMed ID: 11145745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Screening marine resources to find novel chemical inhibitors of disease-relevant protein kinases].
    Baratte B; Serive B; Bach S
    Med Sci (Paris); 2015 May; 31(5):538-45. PubMed ID: 26059305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow cytometry for high-throughput, high-content screening.
    Edwards BS; Oprea T; Prossnitz ER; Sklar LA
    Curr Opin Chem Biol; 2004 Aug; 8(4):392-8. PubMed ID: 15288249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HTPS flow cytometry: a novel platform for automated high throughput drug discovery and characterization.
    Edwards BS; Kuckuck FW; Prossnitz ER; Ransom JT; Sklar LA
    J Biomol Screen; 2001 Apr; 6(2):83-90. PubMed ID: 11689102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free screening assays: a strategy for finding better drug candidates.
    Lunn CA
    Future Med Chem; 2010 Nov; 2(11):1703-16. PubMed ID: 21428840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol development for discovery of angiogenesis inhibitors via automated methods using zebrafish.
    Mauro A; Ng R; Li JY; Guan R; Wang Y; Singh KK; Wen XY
    PLoS One; 2019; 14(11):e0221796. PubMed ID: 31730619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.