These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Greatly improved small inductance measurement using quartz crystal parasitic capacitance compensation. Matko V; Jezernik K Sensors (Basel); 2010; 10(4):3954-60. PubMed ID: 22319335 [TBL] [Abstract][Full Text] [Related]
8. Detection Principles of Temperature Compensated Oscillators with Reactance Influence on Piezoelectric Resonator. Matko V; Milanovič M Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32024160 [TBL] [Abstract][Full Text] [Related]
9. A novel microcomputer temperature-compensating method for an overtone crystal oscillator. Li M; Huang X; Tan F; Fan Y; Liang X IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1919-22. PubMed ID: 16422403 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity and Accuracy of Dielectric Measurements of Liquids Significantly Improved by Coupled Capacitive-Dependent Quartz Crystals. Matko V; Milanovič M Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065458 [TBL] [Abstract][Full Text] [Related]
11. Major improvements of quartz crystal pulling sensitivity and linearity using series reactance. Matko V; Safarič R Sensors (Basel); 2009; 9(10):8263-70. PubMed ID: 22408504 [TBL] [Abstract][Full Text] [Related]
12. Measurements of Small Frequency Differences by Dual Mode 4 MHz Quartz Sensors. Matko V Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991928 [TBL] [Abstract][Full Text] [Related]
13. A Method to Increase the Frequency Stability of a TCXO by Compensating Thermal Hysteresis. Wang Z; Wu J Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260651 [TBL] [Abstract][Full Text] [Related]
14. New Method for 100-MHz High-Frequency Temperature-Compensated Crystal Oscillator. Tan F; Liao S; Xu L; Qiu D; Guo L; Ye P IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2745-2749. PubMed ID: 32746234 [TBL] [Abstract][Full Text] [Related]
15. An instrument for simultaneous EQCM impedance and SECM measurements. Gollas B; Bartlett PN; Denuault G Anal Chem; 2000 Jan; 72(2):349-56. PubMed ID: 10658330 [TBL] [Abstract][Full Text] [Related]
16. High-frequency overtone TCXO based on mixing of dual crystal oscillators. Huang X; Wei W; Tan F; Fu W IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1103-7. PubMed ID: 17571809 [TBL] [Abstract][Full Text] [Related]
17. Dynamic Frequency-Temperature Characteristic Modeling for Quartz Crystal Resonator Based on Improved Echo State Network. Deng X; Wang S; Jing S; Huang X; Huang W; Cui B IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):438-446. PubMed ID: 34623266 [TBL] [Abstract][Full Text] [Related]
18. Lam e-mode miniaturized quartz temperature sensors. Kanie H; Kawaehima H IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):341-5. PubMed ID: 18238548 [TBL] [Abstract][Full Text] [Related]
19. Improved electronic interfaces for AT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions. Arnau A; García JV; Jimenez Y; Ferrari V; Ferrari M Rev Sci Instrum; 2008 Jul; 79(7):075110. PubMed ID: 18681737 [TBL] [Abstract][Full Text] [Related]
20. Temperature-frequency converter using a liquid crystal cell as a sensing element. Marcos C; Sánchez Pena JM; Torres JC; Isidro Santos J Sensors (Basel); 2012; 12(3):3204-14. PubMed ID: 22737002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]