These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25325385)

  • 1. Anodic Cu₂S and CuS nanorod and nanowall arrays: preparation, properties and application in CO₂ photoreduction.
    Kar P; Farsinezhad S; Zhang X; Shankar K
    Nanoscale; 2014 Nov; 6(23):14305-18. PubMed ID: 25325385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile and low temperature route to synthesis of CuS nanostructure in mesoporous material by solvothermal method.
    Sohrabnezhad Sh; Zanjanchi MA; Hosseingholizadeh S; Rahnama R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():142-50. PubMed ID: 24394530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.
    Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C
    Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertically aligned TiO2 nanotubes on plastic substrates for flexible solar cells.
    Galstyan V; Vomiero A; Concina I; Braga A; Brisotto M; Bontempi E; Faglia G; Sberveglieri G
    Small; 2011 Sep; 7(17):2437-42. PubMed ID: 21793205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Preparation of CuS Nanoparticles from the Interfaces of Hydrophobic Ionic Liquids and Water.
    Fan Y; Li Y; Han X; Wu X; Zhang L; Wang Q
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31640126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrochemical Properties of Vertically Aligned CuInS2 Nanorod Arrays Prepared via Template-Assisted Growth and Transfer.
    Yang W; Oh Y; Kim J; Kim H; Shin H; Moon J
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):425-31. PubMed ID: 26645722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting.
    Mao A; Park NG; Han GY; Park JH
    Nanotechnology; 2011 Apr; 22(17):175703. PubMed ID: 21411913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled synthesis and catalytic activity of copper sulfide nanostructured assemblies with different morphologies.
    Kundu J; Pradhan D
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1823-34. PubMed ID: 24437513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton Quenching Due to Copper Diffusion Limits the Photocatalytic Activity of CdS/Cu2S Nanorod Heterostructures.
    Jen-La Plante I; Teitelboim A; Pinkas I; Oron D; Mokari T
    J Phys Chem Lett; 2014 Feb; 5(3):590-6. PubMed ID: 26276614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvothermal Synthesis of Three-Dimensional Hierarchical CuS Microspheres from a Cu-Based Ionic Liquid Precursor for High-Performance Asymmetric Supercapacitors.
    Zhang J; Feng H; Yang J; Qin Q; Fan H; Wei C; Zheng W
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21735-44. PubMed ID: 26371955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoresponse of multi-walled carbon nanotube-copper sulfide (MWNT-CuS) hybrid nanostructures.
    Zhan Z; Liu C; Zheng L; Sun G; Li B; Zhang Q
    Phys Chem Chem Phys; 2011 Dec; 13(45):20471-5. PubMed ID: 21993414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper.
    Wu X; Bai H; Zhang J; Chen F; Shi G
    J Phys Chem B; 2005 Dec; 109(48):22836-42. PubMed ID: 16853975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of copper sulfide dendrites and nanowires from elemental sulfur on TEM Cu grids under ambient conditions.
    Han Q; Sun S; Li J; Wang X
    Nanotechnology; 2011 Apr; 22(15):155607. PubMed ID: 21389583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper sulfide self-assembly architectures with improved photothermal performance.
    Bu X; Zhou D; Li J; Zhang X; Zhang K; Zhang H; Yang B
    Langmuir; 2014 Feb; 30(5):1416-23. PubMed ID: 24446661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper sulfide nanoparticles for photothermal ablation of tumor cells.
    Li Y; Lu W; Huang Q; Huang M; Li C; Chen W
    Nanomedicine (Lond); 2010 Oct; 5(8):1161-71. PubMed ID: 21039194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium Alginate-CuS Nanostructures Synthesized at the Gel-Liquid Interface: An Efficient Photocatalyst for Redox Reaction and Water Remediation.
    Dhruv L; Kori DKK; Das AK
    Langmuir; 2023 Jul; 39(27):9439-9452. PubMed ID: 37377166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CuS/KTa
    Dai X; Chen L; Li Z; Li X; Wang J; Hu X; Zhao L; Jia Y; Sun SX; Wu Y; He Y
    J Colloid Interface Sci; 2021 Dec; 603():220-232. PubMed ID: 34197982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal growth of highly oriented single crystalline Ta2O5 nanorod arrays and their conversion to Ta3N5 for efficient solar driven water splitting.
    Su Z; Wang L; Grigorescu S; Lee K; Schmuki P
    Chem Commun (Camb); 2014 Dec; 50(98):15561-4. PubMed ID: 25357012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the formation of CuS concave superstructures with peroxidase-like activity.
    He W; Jia H; Li X; Lei Y; Li J; Zhao H; Mi L; Zhang L; Zheng Z
    Nanoscale; 2012 Jun; 4(11):3501-6. PubMed ID: 22552534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.