These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25325530)

  • 1. Electronic detection of dsDNA transition from helical to zipper conformation using graphene nanopores.
    Sathe C; Girdhar A; Leburton JP; Schulten K
    Nanotechnology; 2014 Nov; 25(44):445105. PubMed ID: 25325530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic Stepwise Translocation of Stretched ssDNA in Graphene Nanopores.
    Qiu H; Sarathy A; Leburton JP; Schulten K
    Nano Lett; 2015 Dec; 15(12):8322-30. PubMed ID: 26581231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles.
    Prasongkit J; Grigoriev A; Pathak B; Ahuja R; Scheicher RH
    Nano Lett; 2011 May; 11(5):1941-5. PubMed ID: 21495701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of protein conformational changes with multilayer graphene nanopore sensors.
    Qiu W; Skafidas E
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16777-81. PubMed ID: 25185959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene.
    Prasongkit J; Feliciano GT; Rocha AR; He Y; Osotchan T; Ahuja R; Scheicher RH
    Sci Rep; 2015 Dec; 5():17560. PubMed ID: 26634811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating DNA Chip Design Using All-Electronic Graphene-Based Substrates.
    de Freitas Martins E; Troiano Feliciano G; Hendrik Scheicher R; Reily Rocha A
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30857133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of a solvent on the electronic transport across diamondoid-functionalized biosensing electrodes.
    Dou M; Maier FC; Fyta M
    Nanoscale; 2019 Aug; 11(30):14216-14225. PubMed ID: 31317158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA translocation through single-layer boron nitride nanopores.
    Gu Z; Zhang Y; Luan B; Zhou R
    Soft Matter; 2016 Jan; 12(3):817-23. PubMed ID: 26537824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Nanopores for Electronic Recognition of DNA Methylation.
    Sarathy A; Qiu H; Leburton JP
    J Phys Chem B; 2017 Apr; 121(15):3757-3763. PubMed ID: 28035832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene.
    Shankla M; Aksimentiev A
    Nat Commun; 2014 Oct; 5():5171. PubMed ID: 25296960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy behaviour for DNA translocation through graphene nanopores.
    Alshehri MH; Cox BJ; Hill JM
    J Theor Biol; 2015 Dec; 387():68-75. PubMed ID: 26449742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward detection of DNA-bound proteins using solid-state nanopores: insights from computer simulations.
    Comer J; Ho A; Aksimentiev A
    Electrophoresis; 2012 Dec; 33(23):3466-79. PubMed ID: 23147918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational investigation of DNA detection using graphene nanopores.
    Sathe C; Zou X; Leburton JP; Schulten K
    ACS Nano; 2011 Nov; 5(11):8842-51. PubMed ID: 21981556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-plane graphene/h-BN/graphene heterostructures with nanopores for electrical detection of DNA nucleotides.
    Kiakojouri A; Frank I; Nadimi E
    Phys Chem Chem Phys; 2021 Nov; 23(44):25126-25135. PubMed ID: 34729571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically Tunable Quenching of DNA Fluctuations in Biased Solid-State Nanopores.
    Qiu H; Girdhar A; Schulten K; Leburton JP
    ACS Nano; 2016 Apr; 10(4):4482-8. PubMed ID: 26998639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection.
    Deng Y; Huang Q; Zhao Y; Zhou D; Ying C; Wang D
    Nanotechnology; 2017 Jan; 28(4):045302. PubMed ID: 27981944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable graphene quantum point contact transistor for DNA detection and characterization.
    Girdhar A; Sathe C; Schulten K; Leburton JP
    Nanotechnology; 2015 Mar; 26(13):134005. PubMed ID: 25765702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoretic Transport of Single-Stranded DNA through a Two Dimensional Nanopore Patterned on an In-Plane Heterostructure.
    Luan B; Kuroda MA
    ACS Nano; 2020 Oct; 14(10):13137-13145. PubMed ID: 32902252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capture and Translocation Characteristics of Short Branched DNA Labels in Solid-State Nanopores.
    Karau P; Tabard-Cossa V
    ACS Sens; 2018 Jul; 3(7):1308-1315. PubMed ID: 29874054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.
    Belkin M; Maffeo C; Wells DB; Aksimentiev A
    ACS Nano; 2013 Aug; 7(8):6816-24. PubMed ID: 23876013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.