BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 25325574)

  • 1. Increasing efficiency in protein-protein coupling: subunit-directed acetylation and phase-directed CuAAC ("click coupling") in the formation of hemoglobin bis-tetramers.
    Wang A; Kluger R
    Biochemistry; 2014 Nov; 53(43):6793-9. PubMed ID: 25325574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit-directed click coupling via doubly cross-linked hemoglobin efficiently produces readily purified functional bis-tetrameric oxygen carriers.
    Singh S; Dubinsky-Davidchik IS; Yang Y; Kluger R
    Org Biomol Chem; 2015 Dec; 13(45):11118-28. PubMed ID: 26400017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient formation of hemoglobin bis-tetramers
    Kim Y; Kluger R
    Org Biomol Chem; 2022 Oct; 20(41):8083-8091. PubMed ID: 36205177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient CuAAC click formation of functional hemoglobin bis-tetramers.
    Yang Y; Kluger R
    Chem Commun (Camb); 2010 Oct; 46(40):7557-9. PubMed ID: 20852763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing nitrite reductase activity of modified hemoglobin: bis-tetramers and their PEGylated derivatives.
    Lui FE; Kluger R
    Biochemistry; 2009 Dec; 48(50):11912-9. PubMed ID: 19894773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional cross-linked hemoglobin bis-tetramers: geometry and cooperativity.
    Hu D; Kluger R
    Biochemistry; 2008 Nov; 47(47):12551-61. PubMed ID: 18956893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient conversion of hemoglobin to a non-vasoactive oxygen carrier by site-specific cross-linking with azido acyl methyl phosphates followed by bio-orthogonal CuAAC with a bis-alkyne.
    Kim Y; Huang LL; Wu N; Kluger R
    Bioorg Chem; 2024 Aug; 149():107464. PubMed ID: 38810483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioorthogonal phase-directed copper-catalyzed azide-alkyne cycloaddition (PDCuAAC) coupling of selectively cross-linked superoxide dismutase dimers produces a fully active bis-dimer.
    Siren EM; Singh S; Kluger R
    Org Biomol Chem; 2015 Oct; 13(40):10244-9. PubMed ID: 26308144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations of the betaN102 residue of HbA not only inhibit the ligand-linked T to Re state transition, but also profoundly affect the properties of the T state itself.
    Kwiatkowski LD; Hui HL; Karasik E; Colby JE; Noble RW
    Biochemistry; 2007 Feb; 46(7):2037-49. PubMed ID: 17253771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-linked hemoglobin bis-tetramers from bioorthogonal coupling do not induce vasoconstriction in the circulation.
    Wang A; Singh S; Yu B; Bloch DB; Zapol WM; Kluger R
    Transfusion; 2019 Jan; 59(1):359-370. PubMed ID: 30444016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemoglobin bis-tetramers via cooperative azide-alkyne coupling.
    Foot JS; Lui FE; Kluger R
    Chem Commun (Camb); 2009 Dec; (47):7315-7. PubMed ID: 20024213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process.
    Tsai CH; Shen TJ; Ho NT; Ho C
    Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and kinetic characterization of a series of betaW37 variants of human hemoglobin A: evidence for high-affinity T quaternary structures.
    Kwiatkowski LD; Hui HL; Wierzba A; Noble RW; Walder RY; Peterson ES; Sligar SG; Sanders KE
    Biochemistry; 1998 Mar; 37(13):4325-35. PubMed ID: 9521753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance of beta116 His (G18) at alpha1beta1 contact sites for alphabeta assembly and autoxidation of hemoglobin.
    Adachi K; Yang Y; Lakka V; Wehrli S; Reddy KS; Surrey S
    Biochemistry; 2003 Sep; 42(34):10252-9. PubMed ID: 12939154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-linked bis-hemoglobins: connections and oxygen binding.
    Gourianov N; Kluger R
    J Am Chem Soc; 2003 Sep; 125(36):10885-92. PubMed ID: 12952468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Nitrite Reductase Activity and Its Correlation with Oxygen Affinity in Hemoglobin Bis-Tetramers.
    Wang A; Kluger R
    Biochemistry; 2016 Aug; 55(33):4688-96. PubMed ID: 27454142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-promoted azide-alkyne cycloaddition for protein-protein coupling in the formation of a bis-hemoglobin as a copper-free oxygen carrier.
    Singh S; Dubinsky-Davidchik IS; Kluger R
    Org Biomol Chem; 2016 Oct; 14(42):10011-10017. PubMed ID: 27714247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient generation of dendritic arrays of cross-linked hemoglobin: symmetry and redundancy.
    Hu D; Kluger R
    Org Biomol Chem; 2008 Jan; 6(1):151-6. PubMed ID: 18075660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quaternary structure of carbonmonoxyhemoglobins in solution: structural changes induced by the allosteric effector inositol hexaphosphate.
    Gong Q; Simplaceanu V; Lukin JA; Giovannelli JL; Ho NT; Ho C
    Biochemistry; 2006 Apr; 45(16):5140-8. PubMed ID: 16618103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chimeric hemoglobins--hybrids of human and swine hemoglobin: assembly and stability of interspecies hybrids.
    Rao MJ; Manjula BN; Kumar R; Acharya AS
    Protein Sci; 1996 May; 5(5):956-65. PubMed ID: 8732767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.