These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 25325772)

  • 1. Comparison of starts and turns of national and regional level swimmers by individualized-distance measurements.
    Veiga S; Cala A; Frutos PG; Navarro E
    Sports Biomech; 2014 Sep; 13(3):285-95. PubMed ID: 25325772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do faster swimmers spend longer underwater than slower swimmers at World Championships?
    Veiga S; Roig A; Gómez-Ruano MA
    Eur J Sport Sci; 2016 Nov; 16(8):919-26. PubMed ID: 26930126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new procedure for race analysis in swimming based on individual distance measurements.
    Veiga S; Cala A; Mallo J; Navarro E
    J Sports Sci; 2013; 31(2):159-65. PubMed ID: 22989356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Start and turn performances of elite sprinters at the 2016 European Championships in swimming.
    Morais JE; Marinho DA; Arellano R; Barbosa TM
    Sports Biomech; 2019 Feb; 18(1):100-114. PubMed ID: 29578384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Underwater and surface strategies of 200 m world level swimmers.
    Veiga S; Roig A
    J Sports Sci; 2016; 34(8):766-71. PubMed ID: 26186108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the starting and turning performances on the subsequent swimming parameters of elite swimmers.
    Veiga S; Roig A
    Sports Biomech; 2017 Mar; 16(1):34-44. PubMed ID: 27241626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematical Comparison of the 200 m Backstroke Turns between National and Regional Level Swimmers.
    Veiga S; Cala A; Frutos PG; Navarro E
    J Sports Sci Med; 2013; 12(4):730-7. PubMed ID: 24421733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of different swimming race constraints on turning movements.
    Veiga S; Mallo J; Navandar A; Navarro E
    Hum Mov Sci; 2014 Aug; 36():217-26. PubMed ID: 24875044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pacing in World-Class Age Group Swimmers in 100 and 200 m Freestyle, Backstroke, Breaststroke, and Butterfly.
    Moser C; Sousa CV; Olher RR; Nikolaidis PT; Knechtle B
    Int J Environ Res Public Health; 2020 May; 17(11):. PubMed ID: 32486151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Starts and Turns between Individual and Relay Swimming Races.
    Qiu X; De la Fuente B; Lorenzo A; Veiga S
    Int J Environ Res Public Health; 2021 Apr; 18(9):. PubMed ID: 33946789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in Race Characteristics between World-Class Individual-Medley and Stroke-Specialist Swimmers.
    Gonjo T; Polach M; Olstad BH; Romann M; Born DP
    Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36294159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Backstroke start performance: the impact of using the Omega OBL2 backstroke ledge.
    Barkwell GE; Dickey JP
    Sports Biomech; 2018 Nov; 17(4):429-441. PubMed ID: 28975846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Start and turn performances of elite male swimmers: benchmarks and underlying mechanisms.
    Born DP; Kuger J; Polach M; Romann M
    Sports Biomech; 2024 Apr; 23(4):484-502. PubMed ID: 33663342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction between intra-cyclic variation of the velocity and mean swimming velocity in young competitive swimmers.
    Barbosa TM; Morouço PG; Jesus S; Feitosa WG; Costa MJ; Marinho DA; Silva AJ; Garrido ND
    Int J Sports Med; 2013 Feb; 34(2):123-30. PubMed ID: 22972251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consistency of swimming performance within and between competitions.
    Stewart AM; Hopkins WG
    Med Sci Sports Exerc; 2000 May; 32(5):997-1001. PubMed ID: 10795792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of pace and turn parameters of elite long-distance swimmers.
    Morais JE; Barbosa TM; Neiva HP; Marinho DA
    Hum Mov Sci; 2019 Feb; 63():108-119. PubMed ID: 30508689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of limbs' actions to the four competitive swimming strokes: a nonlinear approach.
    Bartolomeu RF; Costa MJ; Barbosa TM
    J Sports Sci; 2018 Aug; 36(16):1836-1845. PubMed ID: 29318954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Race Analysis in Competitive Swimming: A Narrative Review.
    Gonjo T; Olstad BH
    Int J Environ Res Public Health; 2020 Dec; 18(1):. PubMed ID: 33374118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the Start, Turn and Finish Performance of Elite Swimmers in 100 m and 200 m Races.
    Marinho DA; Barbosa TM; Neiva HP; Silva AJ; Morais JE
    J Sports Sci Med; 2020 Jun; 19(2):397-407. PubMed ID: 32390734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-course performance variation across all race sections: How 100 and 200 m elite male swimmers progress between rounds.
    Cuenca-Fernández F; Ruiz-Navarro JJ; Polach M; Arellano R; Born DP
    Front Sports Act Living; 2023; 5():1146711. PubMed ID: 37057072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.