These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25325920)

  • 21. The Effect of Cadence on the Mechanics and Energetics of Constant Power Cycling.
    Brennan SF; Cresswell AG; Farris DJ; Lichtwark GA
    Med Sci Sports Exerc; 2019 May; 51(5):941-950. PubMed ID: 30531486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An exploration of muscle co-activation during different walking speeds and the association with lower limb joint stiffness.
    Akl AR; Conceição F; Richards J
    J Biomech; 2023 Aug; 157():111715. PubMed ID: 37423119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EMG threshold determination in eight lower limb muscles during cycling exercise: a pilot study.
    Hug F; Laplaud D; Lucia A; Grelot L
    Int J Sports Med; 2006 Jun; 27(6):456-62. PubMed ID: 16767610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do differences in muscle recruitment between novice and elite cyclists reflect different movement patterns or less skilled muscle recruitment?
    Chapman A; Vicenzino B; Blanch P; Hodges P
    J Sci Med Sport; 2009 Jan; 12(1):31-4. PubMed ID: 18077215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of saddle height, pedaling cadence, and workload on joint kinetics and kinematics during cycling.
    Bini RR; Tamborindeguy AC; Mota CB
    J Sport Rehabil; 2010 Aug; 19(3):301-14. PubMed ID: 20811079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors contributing to lower metabolic demand of eccentric compared with concentric cycling.
    Peñailillo L; Blazevich AJ; Nosaka K
    J Appl Physiol (1985); 2017 Oct; 123(4):884-893. PubMed ID: 28663378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of electromyography fatigue threshold in lower limb muscles in trained cyclists and untrained non-cyclists.
    Smirmaul BP; Dantas JL; Fontes EB; Altimari LR; Okano AH; Moraes AC
    Electromyogr Clin Neurophysiol; 2010; 50(3-4):149-54. PubMed ID: 20552949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscle activity patterns altered during pedaling at different body orientations.
    Brown DA; Kautz SA; Dairaghi CA
    J Biomech; 1996 Oct; 29(10):1349-56. PubMed ID: 8884480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography.
    da Silva JC; Tarassova O; Ekblom MM; Andersson E; Rönquist G; Arndt A
    Eur J Appl Physiol; 2016 Sep; 116(9):1807-17. PubMed ID: 27448605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of vibration on kinematics and muscle activation during cycling.
    Viellehner J; Potthast W
    J Sports Sci; 2022 Aug; 40(15):1760-1771. PubMed ID: 35984289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of different unstable sole construction on kinematics and muscle activity of lower limb.
    Gu Y; Lu Y; Mei Q; Li J; Ren J
    Hum Mov Sci; 2014 Aug; 36():46-57. PubMed ID: 24929612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of biomechanical footwear on upper and lower leg muscle activity in comparison with knee brace and normal walking.
    Ylinen J; Pennanen A; Weir A; Häkkinen A; Multanen J
    J Electromyogr Kinesiol; 2021 Apr; 57():102528. PubMed ID: 33647872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional kinematics of competitive and recreational cyclists across different workloads during cycling.
    Bini RR; Dagnese F; Rocha E; Silveira MC; Carpes FP; Mota CB
    Eur J Sport Sci; 2016 Aug; 16(5):553-9. PubMed ID: 26783692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specificity of recumbent cycling as a training modality for the functional movements; sit-to-stand and step-up.
    Kerr A; Rafferty D; Moffat F; Morlan G
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1104-11. PubMed ID: 17854957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence.
    Sanderson DJ; Martin PE; Honeyman G; Keefer J
    J Electromyogr Kinesiol; 2006 Dec; 16(6):642-9. PubMed ID: 16377214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adjustment of muscle coordination during an all-out sprint cycling task.
    Dorel S; Guilhem G; Couturier A; Hug F
    Med Sci Sports Exerc; 2012 Nov; 44(11):2154-64. PubMed ID: 22677928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Grey Relational Analysis of Lower Limb Muscle Fatigue and Pedalling Performance Decline of Elite Athletes during a 30-Second All-Out Sprint Cycling Exercise.
    Wang L; Yang H; Ma G; Gong M; Niu W; Lu T
    J Healthc Eng; 2021; 2021():6755767. PubMed ID: 34938421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Cadence on Physiological and Perceptual Responses during Eccentric Cycling at Different Power Outputs.
    Mater A; Boly A; Assadi H; Martin A; Lepers R
    Med Sci Sports Exerc; 2023 Jun; 55(6):1105-1113. PubMed ID: 36719652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of crank length on biomechanical parameters and muscle activity during standing cycling.
    Park S; Roh J; Hyeong J; Kim S
    J Sports Sci; 2022 Jan; 40(2):185-194. PubMed ID: 34581253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.