These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 25326059)
1. Improvement of catalytic activity of lipase in the presence of calix[4]arene valeric acid or hydrazine derivative. Akoz E; Sayin S; Kaplan S; Yilmaz M Bioprocess Biosyst Eng; 2015 Mar; 38(3):595-604. PubMed ID: 25326059 [TBL] [Abstract][Full Text] [Related]
2. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes. Sayin S; Akoz E; Yilmaz M Org Biomol Chem; 2014 Sep; 12(34):6634-42. PubMed ID: 25012138 [TBL] [Abstract][Full Text] [Related]
3. Calix[n]arene carboxylic acid derivatives as regulators of enzymatic reactions: enhanced enantioselectivity in lipase-catalyzed hydrolysis of (R/S)-naproxen methyl ester. Akoz E; Akbulut OY; Yilmaz M Appl Biochem Biotechnol; 2014 Jan; 172(1):509-23. PubMed ID: 24092454 [TBL] [Abstract][Full Text] [Related]
4. Preparation of new Calix[4]arene-immobilized biopolymers for enhancing catalytic properties of Candida rugosa lipase by sol-gel encapsulation. Ozyilmaz E; Sayin S Appl Biochem Biotechnol; 2013 Aug; 170(8):1871-84. PubMed ID: 23780340 [TBL] [Abstract][Full Text] [Related]
5. Improvement of catalytic properties of Candida rugosa lipase by sol-gel encapsulation in the presence of magnetic calix[4]arene nanoparticles. Sayin S; Yilmaz E; Yilmaz M Org Biomol Chem; 2011 Jun; 9(11):4021-4. PubMed ID: 21509361 [TBL] [Abstract][Full Text] [Related]
6. Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles. Ozyilmaz E; Bayrakci M; Yilmaz M Bioorg Chem; 2016 Apr; 65():1-8. PubMed ID: 26698535 [TBL] [Abstract][Full Text] [Related]
7. Encapsulation of lipase using magnetic fluorescent calix[4]arene derivatives; improvement of enzyme activity and stability. Ozyilmaz E; Cetinguney S; Yilmaz M Int J Biol Macromol; 2019 Jul; 133():1042-1050. PubMed ID: 31042560 [TBL] [Abstract][Full Text] [Related]
8. Improving catalytic hydrolysis reaction efficiency of sol-gel-encapsulated Candida rugosa lipase with magnetic β-cyclodextrin nanoparticles. Ozyilmaz E; Sayin S; Arslan M; Yilmaz M Colloids Surf B Biointerfaces; 2014 Jan; 113():182-9. PubMed ID: 24090713 [TBL] [Abstract][Full Text] [Related]
9. Improvement of catalytic activity of lipase from Candida rugosa via sol-gel encapsulation in the presence of calix(aza)crown. Uyanik A; Sen N; Yilmaz M Bioresour Technol; 2011 Mar; 102(6):4313-8. PubMed ID: 21256747 [TBL] [Abstract][Full Text] [Related]
10. A magnetically separable biocatalyst for resolution of racemic naproxen methyl ester. Ozyilmaz E; Sayin S Bioprocess Biosyst Eng; 2013 Nov; 36(11):1803-6. PubMed ID: 23525833 [TBL] [Abstract][Full Text] [Related]
11. Enantioselective enzymatic hydrolysis of racemic drugs by encapsulation in sol-gel magnetic sporopollenin. Yilmaz E Bioprocess Biosyst Eng; 2012 May; 35(4):493-502. PubMed ID: 21932062 [TBL] [Abstract][Full Text] [Related]
12. Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution. Ozyilmaz E; Ascioglu S; Yilmaz M Int J Biol Macromol; 2021 Apr; 175():79-86. PubMed ID: 33548316 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic naproxen methyl ester. Yilmaz E; Can K; Sezgin M; Yilmaz M Bioresour Technol; 2011 Jan; 102(2):499-506. PubMed ID: 20846857 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of the activity and enantioselectivity of lipase by sol-gel encapsulation immobilization onto β-cyclodextrin-based polymer. Yilmaz E; Sezgin M Appl Biochem Biotechnol; 2012 Apr; 166(8):1927-40. PubMed ID: 22383051 [TBL] [Abstract][Full Text] [Related]
15. Candida rugosa lipase encapsulated with magnetic sporopollenin: design and enantioselective hydrolysis of racemic arylpropanoic acid esters. Ozyilmaz E; Etci K; Sezgin M Prep Biochem Biotechnol; 2018; 48(10):887-897. PubMed ID: 30296382 [TBL] [Abstract][Full Text] [Related]
16. Enantioselective resolution of racemic flurbiprofen methyl ester by lipase encapsulated mercapto calix[4]arenes capped Fe Yildiz H; Ozyilmaz E; Bhatti AA; Yilmaz M Bioprocess Biosyst Eng; 2017 Aug; 40(8):1189-1196. PubMed ID: 28488138 [TBL] [Abstract][Full Text] [Related]
17. Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycerolysis. Singh AK; Mukhopadhyay M Bioprocess Biosyst Eng; 2018 Jan; 41(1):115-127. PubMed ID: 29043450 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for biocatalysis in low-water media. Mukherjee J; Solanki K; Gupta MN Methods Mol Biol; 2013; 1051():117-27. PubMed ID: 23934801 [TBL] [Abstract][Full Text] [Related]
19. Effect of cyclic and acyclic surfactants on the activity of Candida rugosa lipase. Ozyilmaz E; Eski F Bioprocess Biosyst Eng; 2020 Nov; 43(11):2085-2093. PubMed ID: 32601811 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis of sucrose-6-acetate catalyzed by surfactant-coated Candida rugosa lipase immobilized on sol-gel supports. Zhong X; Qian J; Guo H; Hu Y; Liu M Bioprocess Biosyst Eng; 2014 May; 37(5):813-8. PubMed ID: 24037039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]