These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 25326062)
1. Development of an efficient process intensification strategy for enhancing Pfu DNA polymerase production in recombinant Escherichia coli. Hu JH; Wang F; Liu CZ Bioprocess Biosyst Eng; 2015 Apr; 38(4):651-9. PubMed ID: 25326062 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Biomass Production of Recombinant Pfu DNA Polymerase Producer Escherichia coli BL21(DE3) by Optimization of Induction Variables Using Response Surface Methodology. Ceylan HK Protein J; 2023 Aug; 42(4):451-462. PubMed ID: 37199865 [TBL] [Abstract][Full Text] [Related]
3. Expression in Escherichia coli of the thermostable DNA polymerase from Pyrococcus furiosus. Lu C; Erickson HP Protein Expr Purif; 1997 Nov; 11(2):179-84. PubMed ID: 9367814 [TBL] [Abstract][Full Text] [Related]
4. Cloning and expression in Escherichia coli of the recombinant his-tagged DNA polymerases from Pyrococcus furiosus and Pyrococcus woesei. Dabrowski S; Kur J Protein Expr Purif; 1998 Oct; 14(1):131-8. PubMed ID: 9758761 [TBL] [Abstract][Full Text] [Related]
6. Production of recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch cultures. Yildirim S; Konrad D; Calvez S; Drider D; Prévost H; Lacroix C Appl Microbiol Biotechnol; 2007 Dec; 77(3):525-31. PubMed ID: 17882416 [TBL] [Abstract][Full Text] [Related]
7. Optimization of high cell density fermentation process for recombinant nitrilase production in E. coli. Sohoni SV; Nelapati D; Sathe S; Javadekar-Subhedar V; Gaikaiwari RP; Wangikar PP Bioresour Technol; 2015; 188():202-8. PubMed ID: 25739996 [TBL] [Abstract][Full Text] [Related]
8. Optimization of pullulanase production in Escherichia coli by regulation of process conditions and supplement with natural osmolytes. Duan X; Chen J; Wu J Bioresour Technol; 2013 Oct; 146():379-385. PubMed ID: 23948275 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Production of Recombinant Thermobifida fusca Isoamylase in Escherichia coli MDS42. Ran H; Wu J; Wu D; Duan X Appl Biochem Biotechnol; 2016 Oct; 180(3):464-476. PubMed ID: 27179515 [TBL] [Abstract][Full Text] [Related]
10. Effects of feeding and induction strategy on the production of BmR1 antigen in recombinant E. coli. Norsyahida A; Rahmah N; Ahmad RM Lett Appl Microbiol; 2009 Nov; 49(5):544-50. PubMed ID: 19832937 [TBL] [Abstract][Full Text] [Related]
11. Optimization of extracellular production of recombinant asparaginase in Escherichia coli in shake-flask and bioreactor. Khushoo A; Pal Y; Mukherjee KJ Appl Microbiol Biotechnol; 2005 Aug; 68(2):189-97. PubMed ID: 15660216 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of isobutyl-C-galactoside (IBCG) as an isopropylthiogalactoside (IPTG) substitute for increased induction of protein expression. Ko KS; Kruse J; Pohl NL Org Lett; 2003 May; 5(10):1781-3. PubMed ID: 12735776 [TBL] [Abstract][Full Text] [Related]
13. Online measurement of the respiratory activity in shake flasks enables the identification of cultivation phases and patterns indicating recombinant protein production in various Escherichia coli host strains. Ihling N; Bittner N; Diederichs S; Schelden M; Korona A; Höfler GT; Fulton A; Jaeger KE; Honda K; Ohtake H; Büchs J Biotechnol Prog; 2018 Mar; 34(2):315-327. PubMed ID: 29314728 [TBL] [Abstract][Full Text] [Related]
14. Study on improvement of extracellular production of recombinant Thermobifida fusca cutinase by Escherichia coli. Chen S; Liu Z; Chen J; Wu J Appl Biochem Biotechnol; 2011 Sep; 165(2):666-75. PubMed ID: 21594592 [TBL] [Abstract][Full Text] [Related]
15. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Malakar P; Venkatesh KV Appl Microbiol Biotechnol; 2012 Mar; 93(6):2543-9. PubMed ID: 22038249 [TBL] [Abstract][Full Text] [Related]
16. Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG. Binder D; Grünberger A; Loeschcke A; Probst C; Bier C; Pietruszka J; Wiechert W; Kohlheyer D; Jaeger KE; Drepper T Integr Biol (Camb); 2014 Aug; 6(8):755-65. PubMed ID: 24894989 [TBL] [Abstract][Full Text] [Related]
17. Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli. Schmideder A; Cremer JH; Weuster-Botz D Biotechnol Prog; 2016 Nov; 32(6):1426-1435. PubMed ID: 27604066 [TBL] [Abstract][Full Text] [Related]
18. High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG. Zhang Z; Kuipers G; Niemiec Ł; Baumgarten T; Slotboom DJ; de Gier JW; Hjelm A Microb Cell Fact; 2015 Sep; 14():142. PubMed ID: 26377812 [TBL] [Abstract][Full Text] [Related]
19. Influence of induction and operation mode on recombinant rhamnulose 1-phosphate aldolase production by Escherichia coli using the T5 promoter. Vidal L; Ferrer P; Alvaro G; Benaiges MD; Caminal G J Biotechnol; 2005 Jul; 118(1):75-87. PubMed ID: 15908029 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis of enantiopure (S)-3-hydroxybutyric acid in metabolically engineered Escherichia coli. Lee SH; Park SJ; Lee SY; Hong SH Appl Microbiol Biotechnol; 2008 Jun; 79(4):633-41. PubMed ID: 18461320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]