BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25326171)

  • 1. Use of a whole-cell bioreporter, Acinetobacter baylyi, to estimate the genotoxicity and bioavailability of chromium(VI)-contaminated soils.
    Jiang B; Zhu D; Song Y; Zhang D; Liu Z; Zhang X; Huang WE; Li G
    Biotechnol Lett; 2015 Feb; 37(2):343-8. PubMed ID: 25326171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A whole-cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China.
    Song Y; Jiang B; Tian S; Tang H; Liu Z; Li C; Jia J; Huang WE; Zhang X; Li G
    Environ Pollut; 2014 Dec; 195():178-84. PubMed ID: 25243386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples.
    Jiang B; Li G; Xing Y; Zhang D; Jia J; Cui Z; Luan X; Tang H
    Chemosphere; 2017 Oct; 184():384-392. PubMed ID: 28609744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole cell bioreporter application for rapid detection and evaluation of crude oil spill in seawater caused by Dalian oil tank explosion.
    Zhang D; Ding A; Cui S; Hu C; Thornton SF; Dou J; Sun Y; Huang WE
    Water Res; 2013 Mar; 47(3):1191-200. PubMed ID: 23269319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum to: Use of a whole-cell bioreporter, Acinetobacter baylyi, to estimate the genotoxicity and bioavailability of chromium(VI)-contaminated soils.
    Jiang B; Zhu D; Song Y; Zhang D; Liu Z; Zhang X; Huang WE; Li G
    Biotechnol Lett; 2015 Jun; 37(6):1323. PubMed ID: 25725633
    [No Abstract]   [Full Text] [Related]  

  • 6. An assessment and quantitative uncertainty analysis of the health risks to workers exposed to chromium contaminated soils.
    Paustenbach DJ; Meyer DM; Sheehan PJ; Lau V
    Toxicol Ind Health; 1991 May; 7(3):159-96. PubMed ID: 1949057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the human health risks posed by exposure to chromium-contaminated soils.
    Sheehan PJ; Meyer DM; Sauer MM; Paustenbach DJ
    J Toxicol Environ Health; 1991 Feb; 32(2):161-201. PubMed ID: 1995927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemodynamics of chromium reduction in soils: implications to bioavailability.
    Choppala G; Bolan N; Seshadri B
    J Hazard Mater; 2013 Oct; 261():718-24. PubMed ID: 23608747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The extractability of Cr(VI) from contaminated soil in synthetic sweat.
    Wainman T; Hazen RE; Lioy PJ
    J Expo Anal Environ Epidemiol; 1994; 4(2):171-81. PubMed ID: 7549472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring Cr toxicity and remediation processes - combining a whole-cell bioreporter and Cr isotope techniques.
    Zhang Q; Song Y; Amor K; Huang WE; Porcelli D; Thompson I
    Water Res; 2019 Apr; 153():295-303. PubMed ID: 30735959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility.
    Jardine PM; Stewart MA; Barnett MO; Basta NT; Brooks SC; Fendorf S; Mehlhorn TL
    Environ Sci Technol; 2013 Oct; 47(19):11241-8. PubMed ID: 23941581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two plant-hosted whole-cell bacterial biosensors for detection of bioavailable Cr(VI).
    Francisco R; Branco R; Schwab S; Baldani I; Morais PV
    World J Microbiol Biotechnol; 2019 Aug; 35(8):129. PubMed ID: 31376017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills.
    Zhang D; He Y; Wang Y; Wang H; Wu L; Aries E; Huang WE
    Microb Biotechnol; 2012 Jan; 5(1):87-97. PubMed ID: 21951420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment.
    Broadway A; Cave MR; Wragg J; Fordyce FM; Bewley RJ; Graham MC; Ngwenya BT; Farmer JG
    Sci Total Environ; 2010 Dec; 409(2):267-77. PubMed ID: 21035835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexavalent chromium quantification by isotope dilution mass spectrometry in potentially contaminated soils from south Italy.
    Caporale AG; Agrelli D; Rodríguez-González P; Adamo P; Alonso JIG
    Chemosphere; 2019 Oct; 233():92-100. PubMed ID: 31170588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the simulated toxicities of metal mixtures and hydrocarbons using the alkane degrading bioreporter Acinetobacter baylyi ADPWH_recA.
    Li H; Yang Y; Zhang D; Li Y; Zhang H; Luo J; Jones KC
    J Hazard Mater; 2021 Oct; 419():126471. PubMed ID: 34216972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Cr(VI) from contaminated soil by electrokinetic remediation.
    Sawada A; Mori K; Tanaka S; Fukushima M; Tatsumi K
    Waste Manag; 2004; 24(5):483-90. PubMed ID: 15120432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model for evaluation of the phytoavailability of chromium (Cr) to rice (Oryza sativa L.) in representative Chinese soils.
    Xiao W; Yang X; He Z; Rafiq MT; Hou D; Li T
    J Agric Food Chem; 2013 Mar; 61(12):2925-32. PubMed ID: 23469834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site.
    Sun Y; Zhao X; Zhang D; Ding A; Chen C; Huang WE; Zhang H
    Chemosphere; 2017 Nov; 186():510-518. PubMed ID: 28810221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The health hazards posed by chromium-contaminated soils in residential and industrial areas: conclusions of an expert panel.
    Paustenbach DJ; Rinehart WE; Sheehan PJ
    Regul Toxicol Pharmacol; 1991 Apr; 13(2):195-222. PubMed ID: 1852930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.