BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25326317)

  • 1. Computational identification of a new SelD-like family that may participate in sulfur metabolism in hyperthermophilic sulfur-reducing archaea.
    Li GP; Jiang L; Ni JZ; Liu Q; Zhang Y
    BMC Genomics; 2014 Oct; 15(1):908. PubMed ID: 25326317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico identification of genes involved in selenium metabolism: evidence for a third selenium utilization trait.
    Zhang Y; Turanov AA; Hatfield DL; Gladyshev VN
    BMC Genomics; 2008 May; 9():251. PubMed ID: 18510720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics reveals new candidate genes involved in selenium metabolism in prokaryotes.
    Lin J; Peng T; Jiang L; Ni JZ; Liu Q; Chen L; Zhang Y
    Genome Biol Evol; 2015 Jan; 7(3):664-76. PubMed ID: 25638258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Transcriptional Regulons for Autotrophic Cycle Genes in Crenarchaeota.
    Leyn SA; Rodionova IA; Li X; Rodionov DA
    J Bacteriol; 2015 Jul; 197(14):2383-91. PubMed ID: 25939834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo requirement of selenophosphate for selenoprotein synthesis in archaea.
    Stock T; Selzer M; Rother M
    Mol Microbiol; 2010 Jan; 75(1):149-60. PubMed ID: 19919669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a novel selD homolog from eukaryotes, bacteria, and archaea: is there an autoregulatory mechanism in selenocysteine metabolism?
    Guimarães MJ; Peterson D; Vicari A; Cocks BG; Copeland NG; Gilbert DJ; Jenkins NA; Ferrick DA; Kastelein RA; Bazan JF; Zlotnik A
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15086-91. PubMed ID: 8986768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomic analysis of selenium utilization traits in different marine environments.
    Farukh M
    J Microbiol; 2020 Feb; 58(2):113-122. PubMed ID: 31993987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria.
    Peng T; Lin J; Xu YZ; Zhang Y
    ISME J; 2016 Aug; 10(8):2048-59. PubMed ID: 26800233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archaeal roots of intramembrane aspartyl protease siblings signal peptide peptidase and presenilin.
    Raut P; Glass JB; Lieberman RL
    Proteins; 2021 Feb; 89(2):232-241. PubMed ID: 32935885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of selenocysteine as a source of selenium for selenophosphate biosynthesis.
    Lacourciere GM; Stadtman TC
    Biofactors; 2001; 14(1-4):69-74. PubMed ID: 11568442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The selenophosphate synthetase family: A review.
    Manta B; Makarova NE; Mariotti M
    Free Radic Biol Med; 2022 Nov; 192():63-76. PubMed ID: 36122644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of archaeosine synthesis in crenarchaeota.
    Phillips G; Swairjo MA; Gaston KW; Bailly M; Limbach PA; Iwata-Reuyl D; de Crécy-Lagard V
    ACS Chem Biol; 2012 Feb; 7(2):300-5. PubMed ID: 22032275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Selenophosphate Synthetase Gene,
    McAllister KN; Martinez Aguirre A; Sorg JA
    J Bacteriol; 2021 May; 203(12):e0000821. PubMed ID: 33820795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenocysteine incorporation in Kinetoplastid: selenophosphate synthetase (SELD) from Leishmania major and Trypanosoma brucei.
    Sculaccio SA; Rodrigues EM; Cordeiro AT; Magalhães A; Braga AL; Alberto EE; Thiemann OH
    Mol Biochem Parasitol; 2008 Dec; 162(2):165-71. PubMed ID: 18812192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel proteins for homocysteine biosynthesis in anaerobic microorganisms.
    Rauch BJ; Gustafson A; Perona JJ
    Mol Microbiol; 2014 Dec; 94(6):1330-42. PubMed ID: 25315403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A- dependent NAD(P)H sulfur oxidoreductase.
    Schut GJ; Bridger SL; Adams MW
    J Bacteriol; 2007 Jun; 189(12):4431-41. PubMed ID: 17449625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selenoproteins and the metabolic features of the archaeal ancestor of eukaryotes.
    Foster CB
    Mol Biol Evol; 2005 Mar; 22(3):383-6. PubMed ID: 15483329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification of SF1 and SF2 helicases from archaea.
    Chamieh H; Ibrahim H; Kozah J
    Gene; 2016 Jan; 576(1 Pt 2):214-28. PubMed ID: 26456193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota".
    Koonin EV; Makarova KS; Elkins JG
    Biol Direct; 2007 Dec; 2():38. PubMed ID: 18081935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli mutant SELD enzymes. The cysteine 17 residue is essential for selenophosphate formation from ATP and selenide.
    Kim IY; Veres Z; Stadtman TC
    J Biol Chem; 1992 Sep; 267(27):19650-4. PubMed ID: 1527085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.