BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

605 related articles for article (PubMed ID: 25326622)

  • 21. Rice domestication by reducing shattering.
    Li C; Zhou A; Sang T
    Science; 2006 Mar; 311(5769):1936-9. PubMed ID: 16527928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Managing for Multifunctionality in Perennial Grain Crops.
    Ryan MR; Crews TE; Culman SW; DeHaan LR; Hayes RC; Jungers JM; Bakker MG
    Bioscience; 2018 Apr; 68(4):294-304. PubMed ID: 29662249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Key to the Future Lies in the Past: Insights from Grain Legume Domestication and Improvement Should Inform Future Breeding Strategies.
    Bohra A; Tiwari A; Kaur P; Ganie SA; Raza A; Roorkiwal M; Mir RR; Fernie AR; Smýkal P; Varshney RK
    Plant Cell Physiol; 2022 Nov; 63(11):1554-1572. PubMed ID: 35713290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic architecture of novel traits in the hopi sunflower.
    Wills DM; Abdel-Haleem H; Knapp SJ; Burke JM
    J Hered; 2010; 101(6):727-36. PubMed ID: 20696668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward the domestication of lignocellulosic energy crops: learning from food crop domestication.
    Sang T
    J Integr Plant Biol; 2011 Feb; 53(2):96-104. PubMed ID: 21261812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants.
    Gupta PK; Rustgi S; Kumar N
    Genome; 2006 Jun; 49(6):565-71. PubMed ID: 16936836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation.
    von Wettberg EJB; Chang PL; Başdemir F; Carrasquila-Garcia N; Korbu LB; Moenga SM; Bedada G; Greenlon A; Moriuchi KS; Singh V; Cordeiro MA; Noujdina NV; Dinegde KN; Shah Sani SGA; Getahun T; Vance L; Bergmann E; Lindsay D; Mamo BE; Warschefsky EJ; Dacosta-Calheiros E; Marques E; Yilmaz MA; Cakmak A; Rose J; Migneault A; Krieg CP; Saylak S; Temel H; Friesen ML; Siler E; Akhmetov Z; Ozcelik H; Kholova J; Can C; Gaur P; Yildirim M; Sharma H; Vadez V; Tesfaye K; Woldemedhin AF; Tar'an B; Aydogan A; Bukun B; Penmetsa RV; Berger J; Kahraman A; Nuzhdin SV; Cook DR
    Nat Commun; 2018 Feb; 9(1):649. PubMed ID: 29440741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The molecular genetics of crop domestication.
    Doebley JF; Gaut BS; Smith BD
    Cell; 2006 Dec; 127(7):1309-21. PubMed ID: 17190597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agriculture and the Disruption of Plant-Microbial Symbiosis.
    Porter SS; Sachs JL
    Trends Ecol Evol; 2020 May; 35(5):426-439. PubMed ID: 32294424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of QTLs in the breeding of high-yielding rice.
    Miura K; Ashikari M; Matsuoka M
    Trends Plant Sci; 2011 Jun; 16(6):319-26. PubMed ID: 21429786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Life History Variation as a Model for Understanding Trade-Offs in Plant-Environment Interactions.
    Lundgren MR; Des Marais DL
    Curr Biol; 2020 Feb; 30(4):R180-R189. PubMed ID: 32097648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Breeding technologies to increase crop production in a changing world.
    Tester M; Langridge P
    Science; 2010 Feb; 327(5967):818-22. PubMed ID: 20150489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular population genetics and agronomic alleles in seed banks: searching for a needle in a haystack?
    Prada D
    J Exp Bot; 2009; 60(9):2541-52. PubMed ID: 19451185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green revolution: the way forward.
    Khush GS
    Nat Rev Genet; 2001 Oct; 2(10):815-22. PubMed ID: 11584298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication.
    Golan G; Oksenberg A; Peleg Z
    J Exp Bot; 2015 Sep; 66(19):5703-11. PubMed ID: 26019253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Back to the future of cereals. Genomic studies of the world's major grain crops, together with a technology called marker-assisted breeding, could yield a new green revolution.
    Goff SA; Salmeron JM
    Sci Am; 2004 Aug; 291(2):42-9. PubMed ID: 15298118
    [No Abstract]   [Full Text] [Related]  

  • 37. Cultivated and weedy rice interactions and the domestication process.
    Lawton-Rauh A; Burgos N
    Mol Ecol; 2010 Aug; 19(16):3243-5. PubMed ID: 20701682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring natural selection to guide breeding for agriculture.
    Henry RJ; Nevo E
    Plant Biotechnol J; 2014 Aug; 12(6):655-62. PubMed ID: 24975385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic Incompatibilities and Evolutionary Rescue by Wild Relatives Shaped Grain Amaranth Domestication.
    Gonçalves-Dias J; Singh A; Graf C; Stetter MG
    Mol Biol Evol; 2023 Aug; 40(8):. PubMed ID: 37552934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current issues in cereal crop biodiversity.
    Moreta DE; Mathur PN; van Zonneveld M; Amaya K; Arango J; Selvaraj MG; Dedicova B
    Adv Biochem Eng Biotechnol; 2015; 147():1-35. PubMed ID: 24352706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.