These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

602 related articles for article (PubMed ID: 25326622)

  • 61. Characterization of QTLs for harvest index and source-sink characters in a DH population of rice (Oryza sativa L.).
    Mao BB; Cai WJ; Zhang ZH; Hu ZL; Li P; Zhu LH; Zhu YG
    Yi Chuan Xue Bao; 2003 Dec; 30(12):1118-26. PubMed ID: 14986429
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Getting domestication straight: ramosa1 in maize.
    Dempewolf H
    Mol Ecol; 2010 Apr; 19(7):1267-9. PubMed ID: 20456229
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Parallel selection on a dormancy gene during domestication of crops from multiple families.
    Wang M; Li W; Fang C; Xu F; Liu Y; Wang Z; Yang R; Zhang M; Liu S; Lu S; Lin T; Tang J; Wang Y; Wang H; Lin H; Zhu B; Chen M; Kong F; Liu B; Zeng D; Jackson SA; Chu C; Tian Z
    Nat Genet; 2018 Oct; 50(10):1435-1441. PubMed ID: 30250128
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Crop adaptation to climate change: An evolutionary perspective.
    Gao L; Kantar MB; Moxley D; Ortiz-Barrientos D; Rieseberg LH
    Mol Plant; 2023 Oct; 16(10):1518-1546. PubMed ID: 37515323
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Seed size: a priority trait in cereal crops.
    Kesavan M; Song JT; Seo HS
    Physiol Plant; 2013 Feb; 147(2):113-20. PubMed ID: 22680622
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cereal breeding takes a walk on the wild side.
    Feuillet C; Langridge P; Waugh R
    Trends Genet; 2008 Jan; 24(1):24-32. PubMed ID: 18054117
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation.
    von Wettberg EJB; Chang PL; Başdemir F; Carrasquila-Garcia N; Korbu LB; Moenga SM; Bedada G; Greenlon A; Moriuchi KS; Singh V; Cordeiro MA; Noujdina NV; Dinegde KN; Shah Sani SGA; Getahun T; Vance L; Bergmann E; Lindsay D; Mamo BE; Warschefsky EJ; Dacosta-Calheiros E; Marques E; Yilmaz MA; Cakmak A; Rose J; Migneault A; Krieg CP; Saylak S; Temel H; Friesen ML; Siler E; Akhmetov Z; Ozcelik H; Kholova J; Can C; Gaur P; Yildirim M; Sharma H; Vadez V; Tesfaye K; Woldemedhin AF; Tar'an B; Aydogan A; Bukun B; Penmetsa RV; Berger J; Kahraman A; Nuzhdin SV; Cook DR
    Nat Commun; 2018 Feb; 9(1):649. PubMed ID: 29440741
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Grazing animals drove domestication of grain crops.
    Spengler RN; Mueller NG
    Nat Plants; 2019 Jul; 5(7):656-662. PubMed ID: 31285559
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Domestication and plant genomes.
    Tang H; Sezen U; Paterson AH
    Curr Opin Plant Biol; 2010 Apr; 13(2):160-6. PubMed ID: 19944637
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement.
    Muñoz N; Liu A; Kan L; Li MW; Lam HM
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28165413
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Missing domesticated plant forms: can artificial selection fill the gap?
    Van Tassel DL; DeHaan LR; Cox TS
    Evol Appl; 2010 Sep; 3(5-6):434-52. PubMed ID: 25567937
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Parallel Seed Color Adaptation during Multiple Domestication Attempts of an Ancient New World Grain.
    Stetter MG; Vidal-Villarejo M; Schmid KJ
    Mol Biol Evol; 2020 May; 37(5):1407-1419. PubMed ID: 31860092
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular genetic variation of animals and plants under domestication.
    Andersson L; Purugganan M
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2122150119. PubMed ID: 35858409
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Doubling down on genomes: polyploidy and crop plants.
    Renny-Byfield S; Wendel JF
    Am J Bot; 2014 Oct; 101(10):1711-25. PubMed ID: 25090999
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genetic diversity in Carthamus tinctorius (Asteraceae; safflower), an underutilized oilseed crop.
    Pearl SA; Burke JM
    Am J Bot; 2014 Oct; 101(10):1640-50. PubMed ID: 25096251
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Managing for Multifunctionality in Perennial Grain Crops.
    Ryan MR; Crews TE; Culman SW; DeHaan LR; Hayes RC; Jungers JM; Bakker MG
    Bioscience; 2018 Apr; 68(4):294-304. PubMed ID: 29662249
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Oil crops for the future.
    Ortiz R; Geleta M; Gustafsson C; Lager I; Hofvander P; Löfstedt C; Cahoon EB; Minina E; Bozhkov P; Stymne S
    Curr Opin Plant Biol; 2020 Aug; 56():181-189. PubMed ID: 31982290
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops.
    Cao K; Zheng Z; Wang L; Liu X; Zhu G; Fang W; Cheng S; Zeng P; Chen C; Wang X; Xie M; Zhong X; Wang X; Zhao P; Bian C; Zhu Y; Zhang J; Ma G; Chen C; Li Y; Hao F; Li Y; Huang G; Li Y; Li H; Guo J; Xu X; Wang J
    Genome Biol; 2014 Jul; 15(7):415. PubMed ID: 25079967
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Environmental change and the option value of genetic diversity.
    Jump AS; Marchant R; Peñuelas J
    Trends Plant Sci; 2009 Jan; 14(1):51-8. PubMed ID: 19042147
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Population genetics of genomics-based crop improvement methods.
    Hamblin MT; Buckler ES; Jannink JL
    Trends Genet; 2011 Mar; 27(3):98-106. PubMed ID: 21227531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.