These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25326722)

  • 1. Factor analytic mixed models for the provision of grower information from national crop variety testing programs.
    Smith AB; Ganesalingam A; Kuchel H; Cullis BR
    Theor Appl Genet; 2015 Jan; 128(1):55-72. PubMed ID: 25326722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic selection in multi-environment plant breeding trials using a factor analytic linear mixed model.
    Tolhurst DJ; Mathews KL; Smith AB; Cullis BR
    J Anim Breed Genet; 2019 Jul; 136(4):279-300. PubMed ID: 31247682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factor analytic and reduced animal models for the investigation of additive genotype-by-environment interaction in outcrossing plant species with application to a Pinus radiata breeding programme.
    Cullis BR; Jefferson P; Thompson R; Smith AB
    Theor Appl Genet; 2014 Oct; 127(10):2193-210. PubMed ID: 25145447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing productivity by matching farming system management and genotype in water-limited environments.
    Kirkegaard JA; Hunt JR
    J Exp Bot; 2010 Oct; 61(15):4129-43. PubMed ID: 20709725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant Variety Selection Using Interaction Classes Derived From Factor Analytic Linear Mixed Models: Models With Independent Variety Effects.
    Smith A; Norman A; Kuchel H; Cullis B
    Front Plant Sci; 2021; 12():737462. PubMed ID: 34567051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of yield and oil from a series of canola breeding trials. Part II. Exploring variety by environment interaction using factor analysis.
    Cullis BR; Smith AB; Beeck CP; Cowling WA
    Genome; 2010 Nov; 53(11):1002-16. PubMed ID: 21076516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed crop-livestock systems: an economic and environmental-friendly way of farming?
    Ryschawy J; Choisis N; Choisis JP; Joannon A; Gibon A
    Animal; 2012 Oct; 6(10):1722-30. PubMed ID: 22717157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating the pedigree information in multi-environment trial analyses for improving common vetch.
    Munoz Santa I; Nagel S; Taylor JD
    Front Plant Sci; 2023; 14():1166133. PubMed ID: 37655219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When more is better: how data sharing would accelerate genomic selection of crop plants.
    Spindel JE; McCouch SR
    New Phytol; 2016 Dec; 212(4):814-826. PubMed ID: 27716975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pest insect control in organically-produced crops of field vegetables.
    Collier RH; Finch S; Davies G
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):259-67. PubMed ID: 12425046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend.
    Smith A; Cullis B; Thompson R
    Biometrics; 2001 Dec; 57(4):1138-47. PubMed ID: 11764254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using crop growth model stress covariates and AMMI decomposition to better predict genotype-by-environment interactions.
    Rincent R; Malosetti M; Ababaei B; Touzy G; Mini A; Bogard M; Martre P; Le Gouis J; van Eeuwijk F
    Theor Appl Genet; 2019 Dec; 132(12):3399-3411. PubMed ID: 31562567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multi-Environment Trial Analysis of Frost Susceptibility in Wheat and Barley Under Australian Frost-Prone Field Conditions.
    Ferrante A; Cullis BR; Smith AB; Able JA
    Front Plant Sci; 2021; 12():722637. PubMed ID: 34490019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting genetic and non-genetic sources of long-term yield trend in German official variety trials.
    Piepho HP; Laidig F; Drobek T; Meyer U
    Theor Appl Genet; 2014 May; 127(5):1009-18. PubMed ID: 24553961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LG biplot: a graphical method for mega-environment investigation using existing crop variety trial data.
    Yan W
    Sci Rep; 2019 May; 9(1):7130. PubMed ID: 31073232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat ( Triticum aestivum L.).
    Hayden MJ; Kuchel H; Chalmers KJ
    Theor Appl Genet; 2004 Nov; 109(8):1641-7. PubMed ID: 15340687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving process-based crop models to better capture genotypeĂ—environmentĂ—management interactions.
    Wang E; Brown HE; Rebetzke GJ; Zhao Z; Zheng B; Chapman SC
    J Exp Bot; 2019 Apr; 70(9):2389-2401. PubMed ID: 30921457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bringing a transgenic crop to market: where compositional analysis fits.
    Privalle LS; Gillikin N; Wandelt C
    J Agric Food Chem; 2013 Sep; 61(35):8260-6. PubMed ID: 23534903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.