BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25326788)

  • 1. Embryonic stem cells conditioned medium enhances Wharton's jelly-derived mesenchymal stem cells expansion under hypoxic condition.
    Prasajak P; Rattananinsruang P; Chotinantakul K; Dechsukhum C; Leeanansaksiri W
    Cytotechnology; 2015 May; 67(3):493-505. PubMed ID: 25326788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells.
    Tantrawatpan C; Manochantr S; Kheolamai P; U-Pratya Y; Supokawej A; Issaragrisil S
    J Med Assoc Thai; 2013 Sep; 96(9):1208-17. PubMed ID: 24163998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term expansion and pluripotent marker array analysis of Wharton's jelly-derived mesenchymal stem cells.
    Nekanti U; Rao VB; Bahirvani AG; Jan M; Totey S; Ta M
    Stem Cells Dev; 2010 Jan; 19(1):117-30. PubMed ID: 19619003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive selection of Wharton's jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells.
    Amiri F; Halabian R; Dehgan Harati M; Bahadori M; Mehdipour A; Mohammadi Roushandeh A; Habibi Roudkenar M
    Hematology; 2015 May; 20(4):208-16. PubMed ID: 25116042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton's jelly-derived mesenchymal stem cells.
    Corotchi MC; Popa MA; Remes A; Sima LE; Gussi I; Lupu Plesu M
    Stem Cell Res Ther; 2013 Jul; 4(4):81. PubMed ID: 23845279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular matrix deposited by Wharton's jelly mesenchymal stem cells enhances cell expansion and tissue specific lineage potential.
    Wang Y; Jiang C; Cong S; Guo C; Yan Z
    Am J Transl Res; 2018; 10(11):3465-3480. PubMed ID: 30662600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffold-free 3D culturing enhance pluripotency, immunomodulatory factors, and differentiation potential of Wharton's jelly-mesenchymal stem cells.
    Thakur G; Bok EY; Kim SB; Jo CH; Oh SJ; Baek JC; Park JE; Kang YH; Lee SL; Kumar R; Rho GJ
    Eur J Cell Biol; 2022; 101(3):151245. PubMed ID: 35667339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro differentiation of human umbilical cord Wharton's jelly mesenchymal stromal cells to insulin producing clusters.
    Nekoei SM; Azarpira N; Sadeghi L; Kamalifar S
    World J Clin Cases; 2015 Jul; 3(7):640-9. PubMed ID: 26244156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Long-Term in vitro Multiplied Human Wharton's Jelly-Derived Mesenchymal Stem Cells prior to Their Use in Clinical Administration.
    Panwar U; Mishra K; Patel P; Bharadva S; Vaniawala S; Shah A; Vundinti BR; Kothari SL; Ghosh K
    Cells Tissues Organs; 2021; 210(4):239-249. PubMed ID: 34521091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity.
    Bai J; Hu Y; Wang YR; Liu LF; Chen J; Su SP; Wang Y
    J Geriatr Cardiol; 2012 Jun; 9(2):166-71. PubMed ID: 22916064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization.
    Ranjbaran H; Abediankenari S; Mohammadi M; Jafari N; Khalilian A; Rahmani Z; Momeninezhad Amiri M; Ebrahimi P
    Acta Med Iran; 2018 Jan; 56(1):28-33. PubMed ID: 29436792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple High Yield Technique for Isolation of Wharton's Jelly-derived Mesenchymal Stem Cell.
    Niknam B; Azizsoltani A; Heidari N; Tokhanbigli S; Alavifard H; Haji Valili M; Amani D; Asadzadeh Aghdaei H; Hashemi SM; Baghaei K
    Avicenna J Med Biotechnol; 2024; 16(2):95-103. PubMed ID: 38618506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system.
    Cardoso TC; Ferrari HF; Garcia AF; Novais JB; Silva-Frade C; Ferrarezi MC; Andrade AL; Gameiro R
    BMC Biotechnol; 2012 May; 12():18. PubMed ID: 22559872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells.
    Kim MJ; Shin KS; Jeon JH; Lee DR; Shim SH; Kim JK; Cha DH; Yoon TK; Kim GJ
    Cell Tissue Res; 2011 Oct; 346(1):53-64. PubMed ID: 21987220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of isolation and culture protocols for human amniotic mesenchymal stem cells.
    Naeem A; Gupta N; Naeem U; Khan MJ; Elrayess MA; Cui W; Albanese C
    Cell Cycle; 2022 Aug; 21(15):1543-1556. PubMed ID: 35412950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased proliferation and analysis of differential gene expression in human Wharton's jelly-derived mesenchymal stromal cells under hypoxia.
    Nekanti U; Dastidar S; Venugopal P; Totey S; Ta M
    Int J Biol Sci; 2010 Sep; 6(5):499-512. PubMed ID: 20877435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of fibroblast growth factor on distinct differentiation potential of cord blood-derived unrestricted somatic stem cells and Wharton's jelly-derived mesenchymal stem/stromal cells.
    Lee S; Park BJ; Kim JY; Jekarl D; Choi HY; Lee SY; Kim M; Kim Y; Park MS
    Cytotherapy; 2015 Dec; 17(12):1723-31. PubMed ID: 26589753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Wharton's Jelly-Cellular Specificity, Stemness Potency, Animal Models, and Current Application in Human Clinical Trials.
    Stefańska K; Ożegowska K; Hutchings G; Popis M; Moncrieff L; Dompe C; Janowicz K; Pieńkowski W; Gutaj P; Shibli JA; Prado WM; Piotrowska-Kempisty H; Mozdziak P; Bruska M; Zabel M; Kempisty B; Nowicki M
    J Clin Med; 2020 Apr; 9(4):. PubMed ID: 32290584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton's jelly derived mesenchymal stem cells? A comparative study.
    Swamynathan P; Venugopal P; Kannan S; Thej C; Kolkundar U; Bhagwat S; Ta M; Majumdar AS; Balasubramanian S
    Stem Cell Res Ther; 2014 Jul; 5(4):88. PubMed ID: 25069491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.