BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25327449)

  • 1. Simultaneous estimation of bidirectional particle flow and relative flux using MUSIC-OCT: phantom studies.
    Yousefi S; Wang RK
    Phys Med Biol; 2014 Nov; 59(22):6693-708. PubMed ID: 25327449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods.
    Huang TC; Lin WC; Wu CC; Zhang G; Lin KP
    Microvasc Res; 2010 Dec; 80(3):477-83. PubMed ID: 20659483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and A-line acquisition velocity.
    Xu T; Bashford G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):898-908. PubMed ID: 23661124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying labial blood flow using optical Doppler tomography.
    Otis LL; Piao D; Gibson CW; Zhu Q
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2004 Aug; 98(2):189-94. PubMed ID: 15316546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-wavelength photothermal optical coherence tomography for imaging microvasculature blood oxygen saturation.
    Yin B; Kuranov RV; McElroy AB; Kazmi S; Dunn AK; Duong TQ; Milner TE
    J Biomed Opt; 2013 May; 18(5):56005. PubMed ID: 23640076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range.
    Cimalla P; Walther J; Mittasch M; Koch E
    J Biomed Opt; 2011 Nov; 16(11):116020. PubMed ID: 22112125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximum likelihood Doppler frequency estimation under decorrelation noise for quantifying flow in optical coherence tomography.
    Chan AC; Srinivasan VJ; Lam EY
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1313-23. PubMed ID: 24760902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Noninvasive Assessment of Microvascular Structure and Function in Humans.
    Smith KJ; Argarini R; Carter HH; Quirk BC; Haynes A; Naylor LH; McKirdy H; Kirk RW; McLaughlin RA; Green DJ
    Med Sci Sports Exerc; 2019 Jul; 51(7):1558-1565. PubMed ID: 30688767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cells stabilize flow in brain microvascular networks.
    Schmid F; Barrett MJP; Obrist D; Weber B; Jenny P
    PLoS Comput Biol; 2019 Aug; 15(8):e1007231. PubMed ID: 31469820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography.
    Trasischker W; Werkmeister RM; Zotter S; Baumann B; Torzicky T; Pircher M; Hitzenberger CK
    J Biomed Opt; 2013 Nov; 18(11):116010. PubMed ID: 24247747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry.
    Cairone F; Ortiz D; Cabrales PJ; Intaglietta M; Bucolo M
    Microvasc Res; 2018 Mar; 116():77-86. PubMed ID: 28918110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation.
    Wu CC; Zhang G; Huang TC; Lin KP
    Microvasc Res; 2009 Dec; 78(3):319-24. PubMed ID: 19647002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of microcirculatory hemodynamics: estimation of boundary condition using particle swarm optimization.
    Pan Q; Wang R; Reglin B; Fang L; Pries AR; Ning G
    Biomed Mater Eng; 2014; 24(6):2341-7. PubMed ID: 25226934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vesicles in Poiseuille flow.
    Danker G; Vlahovska PM; Misbah C
    Phys Rev Lett; 2009 Apr; 102(14):148102. PubMed ID: 19392488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography.
    Tang J; Erdener SE; Fu B; Boas DA
    Opt Lett; 2017 Oct; 42(19):3976-3979. PubMed ID: 28957175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of low- and high-flux capillaries to slow hemodynamic fluctuations in the cerebral cortex of mice.
    Li B; Lee J; Boas DA; Lesage F
    J Cereb Blood Flow Metab; 2016 Aug; 36(8):1351-6. PubMed ID: 27165011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of temporal resolution on estimating capillary RBC-flux with optical coherence tomography.
    Li B; Wang H; Fu B; Wang R; Sakadžic S; Boas DA
    J Biomed Opt; 2017 Jan; 22(1):16014. PubMed ID: 28125157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.