BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25327449)

  • 21. Complexity of vesicle microcirculation.
    Kaoui B; Tahiri N; Biben T; Ez-Zahraouy H; Benyoussef A; Biros G; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041906. PubMed ID: 22181174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical analysis of a red blood cell flowing through a thin micropore.
    Omori T; Hosaka H; Imai Y; Yamaguchi T; Ishikawa T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013008. PubMed ID: 24580321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography.
    Bouwens A; Szlag D; Szkulmowski M; Bolmont T; Wojtkowski M; Lasser T
    Opt Express; 2013 Jul; 21(15):17711-29. PubMed ID: 23938644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of red blood cell flux and velocity estimations based on optical coherence tomography intensity fluctuations.
    Marchand PJ; Lu X; Zhang C; Lesage F
    Sci Rep; 2020 Nov; 10(1):19584. PubMed ID: 33177606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feasibility of capillary velocity assessment by statistical means using dual-beam spectral-domain Optical Coherence Tomography: a preliminary study.
    Daly SM; Silien C; Leahy MJ
    J Biophotonics; 2013 Sep; 6(9):718-32. PubMed ID: 23303589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inversion of hematocrit partition at microfluidic bifurcations.
    Shen Z; Coupier G; Kaoui B; Polack B; Harting J; Misbah C; Podgorski T
    Microvasc Res; 2016 May; 105():40-6. PubMed ID: 26744089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography.
    Jansen SM; de Bruin DM; Faber DJ; Dobbe IJGG; Heeg E; Milstein DMJ; Strackee SD; van Leeuwen TG
    J Biomed Opt; 2017 Aug; 22(8):1-9. PubMed ID: 28822141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography.
    Tao YK; Kennedy KM; Izatt JA
    Opt Express; 2009 Mar; 17(5):4177-88. PubMed ID: 19259254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A capillary-based perfusion phantom for the simulation of brain perfusion for MRI].
    Maciak A; Kronfeld A; Müller-Forell W; Wille C; Kempski O; Stoeter P
    Rofo; 2010 Oct; 182(10):883-90. PubMed ID: 20563961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-vivo full-field measurement of microcirculatory blood flow velocity based on intelligent object identification.
    Ye F; Yin S; Li M; Li Y; Zhong J
    J Biomed Opt; 2020 Jan; 25(1):1-11. PubMed ID: 31970945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue.
    Lücker A; Secomb TW; Weber B; Jenny P
    Microcirculation; 2017 Apr; 24(3):. PubMed ID: 27893186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Red blood cell phase separation in symmetric and asymmetric microchannel networks: effect of capillary dilation and inflow velocity.
    Clavica F; Homsy A; Jeandupeux L; Obrist D
    Sci Rep; 2016 Nov; 6():36763. PubMed ID: 27857165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo.
    Yousefi S; Qin J; Wang RK
    Biomed Opt Express; 2013 Jul; 4(7):1214-28. PubMed ID: 23847744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microvascular flow estimation by contrast-assisted ultrasound B-scan and statistical parametric images.
    Tsui PH; Yeh CK; Chang CC
    IEEE Trans Inf Technol Biomed; 2009 May; 13(3):360-9. PubMed ID: 19174355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography.
    Lee J; Wu W; Lesage F; Boas DA
    J Cereb Blood Flow Metab; 2013 Nov; 33(11):1707-10. PubMed ID: 24022621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ergodic speckle contrast optical coherence tomography velocimetry of rapid blood flow.
    Hong J; Zhu W; He K; Chen X; Lu J; Li P
    Opt Lett; 2024 Jul; 49(13):3600-3603. PubMed ID: 38950219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OCTA Derived Vessel Skeleton Density Versus Flux and Their Associations With Systemic Determinants of Health.
    Kushner-Lenhoff S; Li Y; Zhang Q; Wang RK; Jiang X; Kashani AH
    Invest Ophthalmol Vis Sci; 2022 Feb; 63(2):19. PubMed ID: 35142788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography.
    Moger J; Matcher SJ; Winlove CP; Shore A
    J Biomed Opt; 2004; 9(5):982-94. PubMed ID: 15447020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporal and spatial variations of wall shear stress in the entrance region of microvessels.
    Oulaid O; Zhang J
    J Biomech Eng; 2015 Jun; 137(6):061008. PubMed ID: 25781004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.