These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 25327513)
1. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Park DW; Schendel AA; Mikael S; Brodnick SK; Richner TJ; Ness JP; Hayat MR; Atry F; Frye ST; Pashaie R; Thongpang S; Ma Z; Williams JC Nat Commun; 2014 Oct; 5():5258. PubMed ID: 25327513 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics. Park DW; Brodnick SK; Ness JP; Atry F; Krugner-Higby L; Sandberg A; Mikael S; Richner TJ; Novello J; Kim H; Baek DH; Bong J; Frye ST; Thongpang S; Swanson KI; Lake W; Pashaie R; Williams JC; Ma Z Nat Protoc; 2016 Nov; 11(11):2201-2222. PubMed ID: 27735935 [TBL] [Abstract][Full Text] [Related]
3. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857 [TBL] [Abstract][Full Text] [Related]
4. 3D silicon neural probe with integrated optical fibers for optogenetic modulation. Kim EG; Tu H; Luo H; Liu B; Bao S; Zhang J; Xu Y Lab Chip; 2015 Jul; 15(14):2939-49. PubMed ID: 26097907 [TBL] [Abstract][Full Text] [Related]
5. Graphene neural interfaces for artifact free optogenetics. Hongming Lyu ; Xin Liu ; Rogers N; Gilja V; Kuzum D Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4204-4207. PubMed ID: 28269210 [TBL] [Abstract][Full Text] [Related]
6. An optically transparent multi-electrode array for combined electrophysiology and optophysiology at the mesoscopic scale. Brosch M; Deckert M; Rathi S; Takagaki K; Weidner T; Ohl FW; Schmidt B; Lippert MT J Neural Eng; 2020 Jul; 17(4):046014. PubMed ID: 32705997 [TBL] [Abstract][Full Text] [Related]
7. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. Park DW; Ness JP; Brodnick SK; Esquibel C; Novello J; Atry F; Baek DH; Kim H; Bong J; Swanson KI; Suminski AJ; Otto KJ; Pashaie R; Williams JC; Ma Z ACS Nano; 2018 Jan; 12(1):148-157. PubMed ID: 29253337 [TBL] [Abstract][Full Text] [Related]
8. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics. Kwon KY; Sirowatka B; Weber A; Li W IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):593-600. PubMed ID: 24144668 [TBL] [Abstract][Full Text] [Related]
9. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode. Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813 [TBL] [Abstract][Full Text] [Related]
10. Gene-Embedded Nanostructural Biotic-Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording. Huang WC; Chi HS; Lee YC; Lo YC; Liu TC; Chiang MY; Chen HY; Li SJ; Chen YY; Chen SY ACS Appl Mater Interfaces; 2019 Mar; 11(12):11270-11282. PubMed ID: 30844235 [TBL] [Abstract][Full Text] [Related]
11. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Kuzum D; Takano H; Shim E; Reed JC; Juul H; Richardson AG; de Vries J; Bink H; Dichter MA; Lucas TH; Coulter DA; Cubukcu E; Litt B Nat Commun; 2014 Oct; 5():5259. PubMed ID: 25327632 [TBL] [Abstract][Full Text] [Related]
12. A Compact Closed-Loop Optogenetics System Based on Artifact-Free Transparent Graphene Electrodes. Liu X; Lu Y; Iseri E; Shi Y; Kuzum D Front Neurosci; 2018; 12():132. PubMed ID: 29559885 [TBL] [Abstract][Full Text] [Related]
14. Printable and transparent micro-electrocorticography (μECoG) for optogenetic applications. Kimtan T; Thupmongkol J; Williams JC; Thongpang S Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():482-5. PubMed ID: 25570001 [TBL] [Abstract][Full Text] [Related]
15. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates. Ozden I; Wang J; Lu Y; May T; Lee J; Goo W; O'Shea DJ; Kalanithi P; Diester I; Diagne M; Deisseroth K; Shenoy KV; Nurmikko AV J Neurosci Methods; 2013 Sep; 219(1):142-54. PubMed ID: 23867081 [TBL] [Abstract][Full Text] [Related]
16. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice. Osanai H; Kitamura T; Yamamoto J J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259 [TBL] [Abstract][Full Text] [Related]
17. Multimodal Characterization of Neural Networks Using Highly Transparent Electrode Arrays. Donahue MJ; Kaszas A; Turi GF; Rózsa B; Slézia A; Vanzetta I; Katona G; Bernard C; Malliaras GG; Williamson A eNeuro; 2018; 5(6):. PubMed ID: 30783610 [TBL] [Abstract][Full Text] [Related]
18. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology. Budai D; Vizvári AD; Bali ZK; Márki B; Nagy LV; Kónya Z; Madarász D; Henn-Mike N; Varga C; Hernádi I PLoS One; 2018; 13(3):e0193836. PubMed ID: 29513711 [TBL] [Abstract][Full Text] [Related]
19. Flexible and Highly Biocompatible Nanofiber-Based Electrodes for Neural Surface Interfacing. Heo DN; Kim HJ; Lee YJ; Heo M; Lee SJ; Lee D; Do SH; Lee SH; Kwon IK ACS Nano; 2017 Mar; 11(3):2961-2971. PubMed ID: 28196320 [TBL] [Abstract][Full Text] [Related]
20. MRI compatible optrodes for simultaneous LFP and optogenetic fMRI investigation of seizure-like afterdischarges. Duffy BA; Choy M; Chuapoco MR; Madsen M; Lee JH Neuroimage; 2015 Dec; 123():173-84. PubMed ID: 26208873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]