These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25327524)

  • 21. An algorithmic framework for predicting side effects of drugs.
    Atias N; Sharan R
    J Comput Biol; 2011 Mar; 18(3):207-18. PubMed ID: 21385029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of ultra-fast 2D and 3D ligand and target descriptors for side effect prediction and network analysis in polypharmacology.
    Cortés-Cabrera A; Morris GM; Finn PW; Morreale A; Gago F
    Br J Pharmacol; 2013 Oct; 170(3):557-67. PubMed ID: 23826885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs.
    Liu M; Wu Y; Chen Y; Sun J; Zhao Z; Chen XW; Matheny ME; Xu H
    J Am Med Inform Assoc; 2012 Jun; 19(e1):e28-35. PubMed ID: 22718037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space.
    Cheng F; Li W; Wu Z; Wang X; Zhang C; Li J; Liu G; Tang Y
    J Chem Inf Model; 2013 Apr; 53(4):753-62. PubMed ID: 23527559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.
    LaBute MX; Zhang X; Lenderman J; Bennion BJ; Wong SE; Lightstone FC
    PLoS One; 2014; 9(9):e106298. PubMed ID: 25191698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uterotonic drugs to prevent postpartum haemorrhage: a network meta-analysis.
    Gallos I; Williams H; Price M; Pickering K; Merriel A; Tobias A; Lissauer D; Gee H; Tunçalp Ö; Gyte G; Moorthy V; Roberts T; Deeks J; Hofmeyr J; Gülmezoglu M; Coomarasamy A
    Health Technol Assess; 2019 Feb; 23(9):1-356. PubMed ID: 30821683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel Neural Network Approach to Predict Drug-Target Interactions Based on Drug Side Effects and Genome-Wide Association Studies.
    Prinz J; Koohi-Moghadam M; Sun H; Kocher JA; Wang J
    Hum Hered; 2018; 83(2):79-91. PubMed ID: 30347404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of torsade-causing potential of drug candidates using one-class classification and ensemble modelling approaches.
    He Y; Lim SW; Yap CW
    Curr Drug Saf; 2012 Sep; 7(4):298-308. PubMed ID: 23062242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting Drug-Target Interactions Based on the Ensemble Models of Multiple Feature Pairs.
    Wang C; Zhang J; Chen P; Wang B
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34202954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [AI-based QSAR Modeling for Prediction of Active Compounds in MIE/AOP].
    Uesawa Y
    Yakugaku Zasshi; 2020; 140(4):499-505. PubMed ID: 32238631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure.
    Bender A; Scheiber J; Glick M; Davies JW; Azzaoui K; Hamon J; Urban L; Whitebread S; Jenkins JL
    ChemMedChem; 2007 Jun; 2(6):861-73. PubMed ID: 17477341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ensemble of Multiple Classifiers for Multilabel Classification of Plant Protein Subcellular Localization.
    Wattanapornprom W; Thammarongtham C; Hongsthong A; Lertampaiporn S
    Life (Basel); 2021 Mar; 11(4):. PubMed ID: 33808227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Building the process-drug-side effect network to discover the relationship between biological processes and side effects.
    Lee S; Lee KH; Song M; Lee D
    BMC Bioinformatics; 2011 Mar; 12 Suppl 2(Suppl 2):S2. PubMed ID: 21489221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A unified frame of predicting side effects of drugs by using linear neighborhood similarity.
    Zhang W; Yue X; Liu F; Chen Y; Tu S; Zhang X
    BMC Syst Biol; 2017 Dec; 11(Suppl 6):101. PubMed ID: 29297371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methodologies for investigating drug metabolism at the early drug discovery stage: prediction of hepatic drug clearance and P450 contribution.
    Emoto C; Murayama N; Rostami-Hodjegan A; Yamazaki H
    Curr Drug Metab; 2010 Oct; 11(8):678-85. PubMed ID: 20973757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive ensemble in QSAR prediction for drug discovery.
    Kwon S; Bae H; Jo J; Yoon S
    BMC Bioinformatics; 2019 Oct; 20(1):521. PubMed ID: 31655545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Capreomycin resistance prediction in two species of Mycobacterium using a stacked ensemble method.
    Chowdhury AS; Khaledian E; Broschat SL
    J Appl Microbiol; 2019 Dec; 127(6):1656-1664. PubMed ID: 31419358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank.
    Yuan Q; Gao J; Wu D; Zhang S; Mamitsuka H; Zhu S
    Bioinformatics; 2016 Jun; 32(12):i18-i27. PubMed ID: 27307615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting drug side effects by multi-label learning and ensemble learning.
    Zhang W; Liu F; Luo L; Zhang J
    BMC Bioinformatics; 2015 Nov; 16():365. PubMed ID: 26537615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.