BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25327886)

  • 1. Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications.
    Mathaes R; Winter G; Besheer A; Engert J
    Expert Opin Drug Deliv; 2015 Mar; 12(3):481-92. PubMed ID: 25327886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of polymeric nanostructure shape on drug delivery.
    Venkataraman S; Hedrick JL; Ong ZY; Yang C; Ee PL; Hammond PT; Yang YY
    Adv Drug Deliv Rev; 2011 Nov; 63(14-15):1228-46. PubMed ID: 21777633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles.
    Jindal AB
    Int J Pharm; 2017 Oct; 532(1):450-465. PubMed ID: 28917985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery.
    Yoo JW; Doshi N; Mitragotri S
    Adv Drug Deliv Rev; 2011 Nov; 63(14-15):1247-56. PubMed ID: 21605607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle shape effects in vitro and in vivo.
    Harris BJ; Dalhaimer P
    Front Biosci (Schol Ed); 2012 Jun; 4(4):1344-53. PubMed ID: 22652876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of particle shape and size on cellular uptake.
    Zheng M; Yu J
    Drug Deliv Transl Res; 2016 Feb; 6(1):67-72. PubMed ID: 26679196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers.
    Caldorera-Moore M; Guimard N; Shi L; Roy K
    Expert Opin Drug Deliv; 2010 Apr; 7(4):479-95. PubMed ID: 20331355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-opting Moore's law: Therapeutics, vaccines and interfacially active particles manufactured via PRINT®.
    DeSimone JM
    J Control Release; 2016 Oct; 240():541-543. PubMed ID: 27423326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles.
    Mathaes R; Winter G; Engert J; Besheer A
    Int J Pharm; 2013 Sep; 453(2):620-9. PubMed ID: 23727141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape matters when engineering mesoporous silica-based nanomedicines.
    Hao N; Li L; Tang F
    Biomater Sci; 2016 Apr; 4(4):575-91. PubMed ID: 26818852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of nanoparticle shape in cancer drug delivery.
    Truong NP; Whittaker MR; Mak CW; Davis TP
    Expert Opin Drug Deliv; 2015 Jan; 12(1):129-42. PubMed ID: 25138827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of particle geometry and PEGylation on phagocytosis of particulate carriers.
    Mathaes R; Winter G; Besheer A; Engert J
    Int J Pharm; 2014 Apr; 465(1-2):159-64. PubMed ID: 24560647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters.
    Gaumet M; Vargas A; Gurny R; Delie F
    Eur J Pharm Biopharm; 2008 May; 69(1):1-9. PubMed ID: 17826969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle morphology: an important factor affecting drug delivery by nanocarriers into solid tumors.
    Wang Z; Wu Z; Liu J; Zhang W
    Expert Opin Drug Deliv; 2018 Apr; 15(4):379-395. PubMed ID: 29264946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid lipid nanoparticles for parenteral drug delivery.
    Wissing SA; Kayser O; Müller RH
    Adv Drug Deliv Rev; 2004 May; 56(9):1257-72. PubMed ID: 15109768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.
    Banerjee A; Qi J; Gogoi R; Wong J; Mitragotri S
    J Control Release; 2016 Sep; 238():176-185. PubMed ID: 27480450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles for drug delivery: review of the formulation and process difficulties illustrated by the emulsion-diffusion process.
    Moinard-Checot D; Chevalier Y; Briançon S; Fessi H; Guinebretière S
    J Nanosci Nanotechnol; 2006; 6(9-10):2664-81. PubMed ID: 17048474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles.
    Morachis JM; Mahmoud EA; Almutairi A
    Pharmacol Rev; 2012 Jul; 64(3):505-19. PubMed ID: 22544864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers. I. Effect of formulation variables on the physicochemical properties, drug release and stability of clotrimazole-loaded nanoparticles.
    Das S; Ng WK; Tan RB
    Nanotechnology; 2014 Mar; 25(10):105101. PubMed ID: 24531790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery.
    Jain AK; Thareja S
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):524-539. PubMed ID: 30784319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.