These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25328008)

  • 1. Tunable reverse electrodialysis microplatform with geometrically controlled self-assembled nanoparticle network.
    Choi E; Kwon K; Kim D; Park J
    Lab Chip; 2015 Jan; 15(1):168-78. PubMed ID: 25328008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electrokinetic study on tunable 3D nanochannel networks constructed by spatially controlled nanoparticle assembly.
    Choi E; Kwon K; Kim D; Park J
    Lab Chip; 2015 Jan; 15(2):512-23. PubMed ID: 25407418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-equilibrium electrokinetic micromixer with 3D nanochannel networks.
    Choi E; Kwon K; Lee SJ; Kim D; Park J
    Lab Chip; 2015 Apr; 15(8):1794-8. PubMed ID: 25710479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis.
    Ouyang W; Wang W; Zhang H; Wu W; Li Z
    Nanotechnology; 2013 Aug; 24(34):345401. PubMed ID: 23899953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paper-based energy harvesting from salinity gradients.
    Chang HK; Choi E; Park J
    Lab Chip; 2016 Feb; 16(4):700-8. PubMed ID: 26768119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power Generation by Reverse Electrodialysis in a Microfluidic Device with a Nafion Ion-Selective Membrane.
    Tsai TC; Liu CW; Yang RJ
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Osmotic Power Generators Based on the 1D/2D Hybrid Nanochannel System.
    Dong Y; Zhao Z; Zhao J; Guo Z; Du G; Sun Y; He D; Duan J; Liu J; Yao H
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29197-29212. PubMed ID: 35704847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetic Analysis of Energy Harvest from Natural Salt Gradients in Nanochannels.
    He Y; Huang Z; Chen B; Tsutsui M; Shui Miao X; Taniguchi M
    Sci Rep; 2017 Oct; 7(1):13156. PubMed ID: 29030615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic router based on tunable liquid-liquid mirrors.
    Müller P; Kopp D; Llobera A; Zappe H
    Lab Chip; 2014 Feb; 14(4):737-43. PubMed ID: 24287814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis.
    Wang C; Ouyang J; Gao HL; Chen HW; Xu JJ; Xia XH; Chen HY
    Talanta; 2011 Jul; 85(1):298-303. PubMed ID: 21645702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics.
    Höltzel A; Tallarek U
    J Sep Sci; 2007 Jul; 30(10):1398-419. PubMed ID: 17623420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of Vortex Generation Due to Non-Equilibrium Electrokinetics at the Micro/Nanochannel Interface: Particle Tracking Velocimetry.
    Lee SJ; Kwon K; Jeon TJ; Kim SM; Kim D
    Micromachines (Basel); 2016 Jul; 7(7):. PubMed ID: 30404299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces.
    Khatibi M; Sadeghi A; Ashrafizadeh SN
    Phys Chem Chem Phys; 2021 Jan; 23(3):2211-2221. PubMed ID: 33439162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems.
    Hatzell MC; Ivanov I; Cusick RD; Zhu X; Logan BE
    Phys Chem Chem Phys; 2014 Jan; 16(4):1632-8. PubMed ID: 24322796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optic imaging of single and two-phase pressure-driven flows in nano-scale channels.
    Wu Q; Ok JT; Sun Y; Retterer ST; Neeves KB; Yin X; Bai B; Ma Y
    Lab Chip; 2013 Mar; 13(6):1165-71. PubMed ID: 23370894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature.
    Gu J; Gupta R; Chou CF; Wei Q; Zenhausern F
    Lab Chip; 2007 Sep; 7(9):1198-201. PubMed ID: 17713620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion concentration polarization near microchannel-nanochannel interfaces: effect of pH value.
    Chang CC; Yeh CP; Yang RJ
    Electrophoresis; 2012 Mar; 33(5):758-64. PubMed ID: 22522532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetics in nanochannels: part I. Electric double layer overlap and channel-to-well equilibrium.
    Baldessari F; Santiago JG
    J Colloid Interface Sci; 2008 Sep; 325(2):526-38. PubMed ID: 18639883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stationary chemical gradients for concentration gradient-based separation and focusing in nanofluidic channels.
    Hsu WL; Inglis DW; Jeong H; Dunstan DE; Davidson MR; Goldys EM; Harvie DJ
    Langmuir; 2014 May; 30(18):5337-48. PubMed ID: 24725102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.