These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 25328100)

  • 1. Role of combined tactile and kinesthetic feedback in minimally invasive surgery.
    Lim SC; Lee HK; Park J
    Int J Med Robot; 2015 Sep; 11(3):360-374. PubMed ID: 25328100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Kinesthetic and Artificial Tactile Noise and Variability on Stiffness Perception.
    Kossowsky H; Farajian M; Nisky I
    IEEE Trans Haptics; 2022; 15(2):351-362. PubMed ID: 35271449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field experiment of a telesurgery system using a surgical robot with haptic feedback.
    Ota M; Oki E; Nakanoko T; Tanaka Y; Toyota S; Hu Q; Nakaji Y; Nakanishi R; Ando K; Kimura Y; Hisamatsu Y; Mimori K; Takahashi Y; Morohashi H; Kanno T; Tadano K; Kawashima K; Takano H; Ebihara Y; Shiota M; Inokuchi J; Eto M; Yoshizumi T; Hakamada K; Hirano S; Mori M
    Surg Today; 2024 Apr; 54(4):375-381. PubMed ID: 37653350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of haptic feedback in tele-operated robotic surgery.
    El Rassi I; El Rassi JM
    J Med Eng Technol; 2020 Jul; 44(5):247-254. PubMed ID: 32573288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating tactile feedback in addition to kinesthetic feedback for haptic shape rendering: a pilot study.
    Ratschat AL; van Rooij BM; Luijten J; Marchal-Crespo L
    Front Robot AI; 2024; 11():1298537. PubMed ID: 38660067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a master-slave 3D printed robotic surgical finger with haptic feedback.
    Hamdi JT; Munshi S; Azam S; Omer A
    J Robot Surg; 2024 Jan; 18(1):43. PubMed ID: 38236452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for haptic feedback in teleoperated robot-assisted surgery.
    Okamura AM
    Ind Rob; 2004 Dec; 31(6):499-508. PubMed ID: 16429611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Features of haptic and tactile feedback in TORS-a comparison of available surgical systems.
    Friedrich DT; Dürselen L; Mayer B; Hacker S; Schall F; Hahn J; Hoffmann TK; Schuler PJ; Greve J
    J Robot Surg; 2018 Mar; 12(1):103-108. PubMed ID: 28470408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haptic feedback in robot-assisted minimally invasive surgery.
    Okamura AM
    Curr Opin Urol; 2009 Jan; 19(1):102-7. PubMed ID: 19057225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hand-tool-tissue interaction forces in neurosurgery for haptic rendering.
    Aggravi M; De Momi E; DiMeco F; Cardinale F; Casaceli G; Riva M; Ferrigno G; Prattichizzo D
    Med Biol Eng Comput; 2016 Aug; 54(8):1229-41. PubMed ID: 26718558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surgeons and non-surgeons prefer haptic feedback of instrument vibrations during robotic surgery.
    Koehn JK; Kuchenbecker KJ
    Surg Endosc; 2015 Oct; 29(10):2970-83. PubMed ID: 25539693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of haptic feedback on applied intracorporeal forces using a novel surgical robotic system-a randomized cross-over study with novices in an experimental setup.
    Miller J; Braun M; Bilz J; Matich S; Neupert C; Kunert W; Kirschniak A
    Surg Endosc; 2021 Jul; 35(7):3554-3563. PubMed ID: 32700151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation.
    Meli L; Pacchierotti C; Prattichizzo D
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling.
    Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tactile Feedback Induces Reduced Grasping Force in Robot-Assisted Surgery.
    King CH; Culjat MO; Franco ML; Lewis CE; Dutson EP; Grundfest WS; Bisley JW
    IEEE Trans Haptics; 2009; 2(2):103-110. PubMed ID: 27788101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surgeon-Centered Analysis of Robot-Assisted Needle Driving Under Different Force Feedback Conditions.
    Bahar L; Sharon Y; Nisky I
    Front Neurorobot; 2019; 13():108. PubMed ID: 32038218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.