BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25328852)

  • 1. Factors affecting the determination of cerebrovascular reactivity.
    Regan RE; Fisher JA; Duffin J
    Brain Behav; 2014 Sep; 4(5):775-88. PubMed ID: 25328852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying cerebrovascular reactivity in anterior and posterior cerebral circulations during voluntary breath holding.
    Bruce CD; Steinback CD; Chauhan UV; Pfoh JR; Abrosimova M; Vanden Berg ER; Skow RJ; Davenport MH; Day TA
    Exp Physiol; 2016 Dec; 101(12):1517-1527. PubMed ID: 27615115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian cerebrovascular reactivity to CO2.
    Strohm J; Duffin J; Fisher JA
    Respir Physiol Neurobiol; 2014 Jun; 197():15-8. PubMed ID: 24657248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state tilt has no effect on cerebrovascular CO2 reactivity in anterior and posterior cerebral circulations.
    Tymko MM; Skow RJ; MacKay CM; Day TA
    Exp Physiol; 2015 Jul; 100(7):839-51. PubMed ID: 25966669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction for blood pressure improves correlation between cerebrovascular reactivity assessed by breath holding and 6% CO(2) breathing.
    Prakash K; Chandran DS; Khadgawat R; Jaryal AK; Deepak KK
    J Stroke Cerebrovasc Dis; 2014 Apr; 23(4):630-5. PubMed ID: 23830954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebrovascular and blood pressure responses during voluntary apneas are larger than rebreathing.
    Marullo AL; Bruce CD; Pfoh JR; Chauhan UV; Abrosimova M; Berg ERV; Skow RJ; Davenport MH; Strzalkowski NDJ; Steinback CD; Day TA
    Eur J Appl Physiol; 2022 Mar; 122(3):735-743. PubMed ID: 34978604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does respiratory drive modify the cerebral vascular response to changes in end-tidal carbon dioxide?
    Ogoh S; Suzuki K; Washio T; Tamiya K; Saito S; Bailey TG; Shibata S; Ito G; Miyamoto T
    Exp Physiol; 2019 Sep; 104(9):1363-1370. PubMed ID: 31264258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stability of cerebrovascular CO
    Carr JMJR; Caldwell HG; Carter H; Smith K; Tymko MM; Green DJ; Ainslie PN; Hoiland RL
    Exp Physiol; 2021 Dec; 106(12):2542-2555. PubMed ID: 34730862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of age on cerebral blood flow responses during repeated and sustained stand to sit transitions.
    Klein T; Bailey TG; Wollseiffen P; Schneider S; Askew CD
    Physiol Rep; 2020 May; 8(9):e14421. PubMed ID: 32378357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of steady-state CO
    Herrington BA; Thrall SF; Mann LM; Tymko MM; Day TA
    Auton Neurosci; 2019 Dec; 222():102581. PubMed ID: 31654818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationships between age, sex, and cerebrovascular reactivity to hypercapnia using traditional and kinetic-based analyses in healthy adults.
    Koep JL; Bond B; Barker AR; Ruediger SL; Pizzey FK; Coombes JS; Bailey TG
    Am J Physiol Heart Circ Physiol; 2022 Oct; 323(4):H782-H796. PubMed ID: 36053752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility and diurnal variation in middle cerebral artery blood velocity in healthy humans.
    Shariffi B; Lloyd IN; Cessac ME; Harper JL; Limberg JK
    Exp Physiol; 2023 May; 108(5):692-705. PubMed ID: 36951536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebrovascular reactivity is increased with acclimatization to 3,454 m altitude.
    Flück D; Siebenmann C; Keiser S; Cathomen A; Lundby C
    J Cereb Blood Flow Metab; 2015 Aug; 35(8):1323-30. PubMed ID: 25806704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CO
    Burley CV; Lucas RAI; Whittaker AC; Mullinger K; Lucas SJE
    Exp Physiol; 2020 May; 105(5):893-903. PubMed ID: 32083357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normal hypercapnic cerebrovascular conductance in obstructive sleep apnea.
    Ryan CM; Battisti-Charbonney A; Sobczyk O; Duffin J; Fisher J
    Respir Physiol Neurobiol; 2014 Jan; 190():47-53. PubMed ID: 24056149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebrovascular reactivity is associated with maximal aerobic capacity in healthy older adults.
    Barnes JN; Taylor JL; Kluck BN; Johnson CP; Joyner MJ
    J Appl Physiol (1985); 2013 May; 114(10):1383-7. PubMed ID: 23471946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling between arterial pressure, cerebral blood velocity, and cerebral tissue oxygenation with spontaneous and forced oscillations.
    Rickards CA; Sprick JD; Colby HB; Kay VL; Tzeng YC
    Physiol Meas; 2015 Apr; 36(4):785-801. PubMed ID: 25798890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regular walking breaks prevent the decline in cerebral blood flow associated with prolonged sitting.
    Carter SE; Draijer R; Holder SM; Brown L; Thijssen DHJ; Hopkins ND
    J Appl Physiol (1985); 2018 Sep; 125(3):790-798. PubMed ID: 29878870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring the human ventilatory and cerebral blood flow response to CO2: a technical consideration for the end-tidal-to-arterial gas gradient.
    Tymko MM; Hoiland RL; Kuca T; Boulet LM; Tremblay JC; Pinske BK; Williams AM; Foster GE
    J Appl Physiol (1985); 2016 Jan; 120(2):282-96. PubMed ID: 26542522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cerebrovascular response to carbon dioxide in humans.
    Battisti-Charbonney A; Fisher J; Duffin J
    J Physiol; 2011 Jun; 589(Pt 12):3039-48. PubMed ID: 21521758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.