These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25328928)

  • 1. The severity of iron chlorosis in sensitive plants is related to soil phosphorus levels.
    Sánchez-Rodríguez AR; del Campillo MC; Torrent J
    J Sci Food Agric; 2014 Oct; 94(13):2766-73. PubMed ID: 25328928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pot evaluation of synthetic nanosiderite for the prevention of iron chlorosis.
    Sánchez-Alcalá I; del Campillo MC; Barrón V; Torrent J
    J Sci Food Agric; 2012 Jul; 92(9):1964-73. PubMed ID: 22252574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a knowledge-based correction of iron chlorosis.
    Abadía J; Vázquez S; Rellán-Álvarez R; El-Jendoubi H; Abadía A; Alvarez-Fernández A; López-Millán AF
    Plant Physiol Biochem; 2011 May; 49(5):471-82. PubMed ID: 21349731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical evaluation of HBED/Fe(3+) and the novel HJB/Fe(3+) chelates as fertilizers to alleviate iron chlorosis.
    López-Rayo S; Hernández D; Lucena JJ
    J Agric Food Chem; 2009 Sep; 57(18):8504-13. PubMed ID: 19689133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bicarbonate concentration as affected by soil water content controls iron nutrition of peanut plants in a calcareous soil.
    Zuo Y; Ren L; Zhang F; Jiang RF
    Plant Physiol Biochem; 2007 May; 45(5):357-64. PubMed ID: 17468004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Setting good practices to assess the efficiency of iron fertilizers.
    El-Jendoubi H; Melgar JC; Alvarez-Fernández A; Sanz M; Abadía A; Abadía J
    Plant Physiol Biochem; 2011 May; 49(5):483-8. PubMed ID: 21398136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of olive varieties for tolerance to iron chlorosis.
    Alcántara E; Cordeiro AM; Barranco D
    J Plant Physiol; 2003 Dec; 160(12):1467-72. PubMed ID: 14717439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between beet vinasse and iron fertilisers in the prevention of iron deficiency in lupins.
    de Santiago A; Delgado A
    J Sci Food Agric; 2010 Oct; 90(13):2188-94. PubMed ID: 20607794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus reduces the zinc concentration in cereals pot-grown on calcareous Vertisols from southern Spain.
    Sánchez-Rodríguez AR; Del Campillo MC; Torrent J
    J Sci Food Agric; 2017 Aug; 97(10):3427-3432. PubMed ID: 28026012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese hyperaccumulation capacity of Ilex paraguariensis A. St. Hil. and occurrence of interveinal chlorosis induced by transient toxicity.
    Magri E; Gugelmin EK; Grabarski FAP; Barbosa JZ; Auler AC; Wendling I; Prior SA; Valduga AT; Motta ACV
    Ecotoxicol Environ Saf; 2020 Oct; 203():111010. PubMed ID: 32888587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.).
    Bert PF; Bordenave L; Donnart M; Hévin C; Ollat N; Decroocq S
    Theor Appl Genet; 2013 Feb; 126(2):451-73. PubMed ID: 23139142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean.
    Bin LM; Weng L; Bugter MH
    J Agric Food Chem; 2016 Nov; 64(44):8273-8281. PubMed ID: 27690423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcareous soil interactions of the iron(III) chelates of DPH and Azotochelin and its application on amending iron chlorosis in soybean (Glycine max).
    Ferreira CMH; Sousa CA; Sanchis-Pérez I; López-Rayo S; Barros MT; Soares HMVM; Lucena JJ
    Sci Total Environ; 2019 Jan; 647():1586-1593. PubMed ID: 30180362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and transcriptomic data highlight common features between iron and phosphorus acquisition mechanisms in white lupin roots.
    Venuti S; Zanin L; Marroni F; Franco A; Morgante M; Pinton R; Tomasi N
    Plant Sci; 2019 Aug; 285():110-121. PubMed ID: 31203875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of short-chain polyphosphate fertilization on inorganic P transformation and mobilization of Fe, Mn and Zn in soils.].
    Wang XW; Wang C; Chu GX
    Ying Yong Sheng Tai Xue Bao; 2018 Sep; 29(9):2970-2978. PubMed ID: 30411573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth performance and element concentrations reveal the calcicole-calcifuge behavior of three Adiantum species.
    Liao JX; Liang DY; Jiang QW; Mo L; Pu GZ; Zhang D
    BMC Plant Biol; 2020 Jul; 20(1):327. PubMed ID: 32650742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How amending calcareous soils with municipal solid waste compost affects Fe fractionation and availability to plant.
    Bostani A
    J Trace Elem Med Biol; 2018 May; 47():149-155. PubMed ID: 29544802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese Toxicity in Sugarcane Plantlets Grown on Acidic Soils of Southern China.
    Huang YL; Yang S; Long GX; Zhao ZK; Li XF; Gu MH
    PLoS One; 2016; 11(3):e0148956. PubMed ID: 27023702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates.
    Raya-Díaz S; Sánchez-Rodríguez AR; Segura-Fernández JM; Del Campillo MDC; Quesada-Moraga E
    PLoS One; 2017; 12(10):e0185903. PubMed ID: 28982140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles.
    Hussain A; Ali S; Rizwan M; Rehman MZU; Qayyum MF; Wang H; Rinklebe J
    Ecotoxicol Environ Saf; 2019 May; 173():156-164. PubMed ID: 30771659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.