BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25329309)

  • 21. Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways.
    Wiśniewski JR; Gizak A; Rakus D
    J Proteome Res; 2015 Aug; 14(8):3263-73. PubMed ID: 26080680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells.
    Mulukutla BC; Yongky A; Grimm S; Daoutidis P; Hu WS
    PLoS One; 2015; 10(3):e0121561. PubMed ID: 25806512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of metabolic-control logic to fuel utilization and its significance in tumor cells.
    Newsholme EA; Board M
    Adv Enzyme Regul; 1991; 31():225-46. PubMed ID: 1877389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae.
    Kumar K; Venkatraman V; Bruheim P
    Microb Cell Fact; 2021 Mar; 20(1):64. PubMed ID: 33750414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo dynamics of glycolysis in Escherichia coli shows need for growth-rate dependent metabolome analysis.
    Schaub J; Reuss M
    Biotechnol Prog; 2008; 24(6):1402-7. PubMed ID: 19194955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Testing biochemistry revisited: how in vivo metabolism can be understood from in vitro enzyme kinetics.
    van Eunen K; Kiewiet JA; Westerhoff HV; Bakker BM
    PLoS Comput Biol; 2012; 8(4):e1002483. PubMed ID: 22570597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Snail modulates cell metabolism in MDCK cells.
    Haraguchi M; Indo HP; Iwasaki Y; Iwashita Y; Fukushige T; Majima HJ; Izumo K; Horiuchi M; Kanekura T; Furukawa T; Ozawa M
    Biochem Biophys Res Commun; 2013 Mar; 432(4):618-25. PubMed ID: 23438434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells.
    Neermann J; Wagner R
    J Cell Physiol; 1996 Jan; 166(1):152-69. PubMed ID: 8557765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes.
    Cortassa S; Caceres V; Bell LN; O'Rourke B; Paolocci N; Aon MA
    Biophys J; 2015 Jan; 108(1):163-72. PubMed ID: 25564863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth behavior of number distributed adherent MDCK cells for optimization in microcarrier cultures.
    Bock A; Sann H; Schulze-Horsel J; Genzel Y; Reichl U; Möhler L
    Biotechnol Prog; 2009; 25(6):1717-31. PubMed ID: 19691122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subcellular compartmentation of glycolytic intermediates in Trypanosoma brucei.
    Visser N; Opperdoes FR; Borst P
    Eur J Biochem; 1981 Sep; 118(3):521-6. PubMed ID: 7297560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A modelling study of feedforward activation in human erythrocyte glycolysis.
    Bali M; Thomas SR
    C R Acad Sci III; 2001 Mar; 324(3):185-99. PubMed ID: 11291305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.
    Epstein T; Xu L; Gillies RJ; Gatenby RA
    Cancer Metab; 2014; 2():7. PubMed ID: 24982758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stress eating and tuning out: cancer cells re-wire metabolism to counter stress.
    Stine ZE; Dang CV
    Crit Rev Biochem Mol Biol; 2013; 48(6):609-19. PubMed ID: 24099138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms.
    Marín-Hernández A; López-Ramírez SY; Del Mazo-Monsalvo I; Gallardo-Pérez JC; Rodríguez-Enríquez S; Moreno-Sánchez R; Saavedra E
    FEBS J; 2014 Aug; 281(15):3325-45. PubMed ID: 24912776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The rationalization of high enzyme concentration in metabolic pathways such as glycolysis.
    Betts GF; Srivastava DK
    J Theor Biol; 1991 Jul; 151(2):155-67. PubMed ID: 1943140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 9-pool metabolic structured kinetic model describing days to seconds dynamics of growth and product formation by Penicillium chrysogenum.
    Tang W; Deshmukh AT; Haringa C; Wang G; van Gulik W; van Winden W; Reuss M; Heijnen JJ; Xia J; Chu J; Noorman HJ
    Biotechnol Bioeng; 2017 Aug; 114(8):1733-1743. PubMed ID: 28322433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.
    van den Brink J; Canelas AB; van Gulik WM; Pronk JT; Heijnen JJ; de Winde JH; Daran-Lapujade P
    Appl Environ Microbiol; 2008 Sep; 74(18):5710-23. PubMed ID: 18641162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding central carbon metabolism of rapidly proliferating mammalian cells based on analysis of key enzymatic activities in GS-CHO cell lines.
    Zou W; Al-Rubeai M
    Biotechnol Appl Biochem; 2016 Sep; 63(5):642-651. PubMed ID: 26108557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aberrant Intracellular pH Regulation Limiting Glyceraldehyde-3-Phosphate Dehydrogenase Activity in the Glucose-Sensitive Yeast
    Van Leemputte F; Vanthienen W; Wijnants S; Van Zeebroeck G; Thevelein JM
    mBio; 2020 Oct; 11(5):. PubMed ID: 33109759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.