These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 25329406)

  • 1. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle.
    Melton ED; Swanner ED; Behrens S; Schmidt C; Kappler A
    Nat Rev Microbiol; 2014 Dec; 12(12):797-808. PubMed ID: 25329406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evolving view on biogeochemical cycling of iron.
    Kappler A; Bryce C; Mansor M; Lueder U; Byrne JM; Swanner ED
    Nat Rev Microbiol; 2021 Jun; 19(6):360-374. PubMed ID: 33526911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
    Peng C; Bryce C; Sundman A; Kappler A
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30796062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbially mediated coupling of nitrate reduction and Fe(II) oxidation under anoxic conditions.
    Liu T; Chen D; Li X; Li F
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30844067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation.
    Orsetti S; Laskov C; Haderlein SB
    Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrate transformation and immobilization in particulate organic matter incubations: Influence of redox, iron and (a)biotic conditions.
    Kizewski FR; Kaye JP; Martínez CE
    PLoS One; 2019; 14(7):e0218752. PubMed ID: 31276538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria.
    Lueder U; Druschel G; Emerson D; Kappler A; Schmidt C
    FEMS Microbiol Ecol; 2018 Feb; 94(2):. PubMed ID: 29228192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High spatial resolution of distribution and interconnections between Fe- and N-redox processes in profundal lake sediments.
    Melton ED; Stief P; Behrens S; Kappler A; Schmidt C
    Environ Microbiol; 2014 Oct; 16(10):3287-303. PubMed ID: 25041287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathway for the Production of Hydroxyl Radicals during the Microbially Mediated Redox Transformation of Iron (Oxyhydr)oxides.
    Han R; Lv J; Huang Z; Zhang S; Zhang S
    Environ Sci Technol; 2020 Jan; 54(2):902-910. PubMed ID: 31886656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of organic acids and sulfate on the biogeochemical properties of soil from urban subsurface environments.
    Lee S; O'Loughlin EJ; Kwon MJ
    J Environ Manage; 2021 Aug; 292():112756. PubMed ID: 33984641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoplankton-mediated redox cycle of iron in the epilimnion of Lake Kinneret.
    Shaked Y; Erel Y; Sukenik A
    Environ Sci Technol; 2002 Feb; 36(3):460-7. PubMed ID: 11871562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand Effects on Biotic and Abiotic Fe(II) Oxidation by the Microaerophile
    Zhou N; Luther GW; Chan CS
    Environ Sci Technol; 2021 Jul; 55(13):9362-9371. PubMed ID: 34110796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological redox cycling of iron in nontronite and its potential application in nitrate removal.
    Zhao L; Dong H; Kukkadapu RK; Zeng Q; Edelmann RE; Pentrák M; Agrawal A
    Environ Sci Technol; 2015 May; 49(9):5493-501. PubMed ID: 25873540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere.
    Neubauer SC; Emerson D; Megonigal JP
    Appl Environ Microbiol; 2002 Aug; 68(8):3988-95. PubMed ID: 12147500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils.
    Yamamura S; Watanabe M; Yamamoto N; Sei K; Ike M
    Chemosphere; 2009 Sep; 77(2):169-74. PubMed ID: 19716583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial anaerobic Fe(II) oxidation - Ecology, mechanisms and environmental implications.
    Bryce C; Blackwell N; Schmidt C; Otte J; Huang YM; Kleindienst S; Tomaszewski E; Schad M; Warter V; Peng C; Byrne JM; Kappler A
    Environ Microbiol; 2018 Oct; 20(10):3462-3483. PubMed ID: 30058270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial iron redox cycling in a circumneutral-pH groundwater seep.
    Blöthe M; Roden EE
    Appl Environ Microbiol; 2009 Jan; 75(2):468-73. PubMed ID: 19047399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of microbially mediated corrosion and scaling processes using redox potential measurements.
    Opel O; Eggerichs T; Otte T; Ruck WK
    Bioelectrochemistry; 2014 Jun; 97():137-44. PubMed ID: 24411307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.