These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25329750)

  • 1. Nucleation of graphene and its conversion to single-walled carbon nanotubes.
    Picher M; Lin PA; Gomez-Ballesteros JL; Balbuena PB; Sharma R
    Nano Lett; 2014 Nov; 14(11):6104-8. PubMed ID: 25329750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation.
    Hofmann S; Sharma R; Ducati C; Du G; Mattevi C; Cepek C; Cantoro M; Pisana S; Parvez A; Cervantes-Sodi F; Ferrari AC; Dunin-Borkowski R; Lizzit S; Petaccia L; Goldoni A; Robertson J
    Nano Lett; 2007 Mar; 7(3):602-8. PubMed ID: 17319731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A seamless three-dimensional carbon nanotube graphene hybrid material.
    Zhu Y; Li L; Zhang C; Casillas G; Sun Z; Yan Z; Ruan G; Peng Z; Raji AR; Kittrell C; Hauge RH; Tour JM
    Nat Commun; 2012; 3():1225. PubMed ID: 23187625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation of Single-Wall Carbon Nanotubes from Faceted Pt Catalyst Particles Revealed by
    Ma R; Qiu L; Zhang L; Tang DM; Wang Y; Zhang B; Ding F; Liu C; Cheng HM
    ACS Nano; 2022 Oct; 16(10):16574-16583. PubMed ID: 36228117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into carbon nanotube nucleation: cap formation governed by catalyst interfacial step flow.
    Rao R; Sharma R; Abild-Pedersen F; Nørskov JK; Harutyunyan AR
    Sci Rep; 2014 Oct; 4():6510. PubMed ID: 25308821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles.
    Lin PA; Gomez-Ballesteros JL; Burgos JC; Balbuena PB; Natarajan B; Sharma R
    J Catal; 2017 May; 349():149-155. PubMed ID: 28740274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleation and growth of single-walled nanotubes: the role of metallic catalysts.
    Gavillet J; Thibault J; Stéphan O; Amara H; Loiseau A; Bichara Ch; Gaspard JP; Ducastelle F
    J Nanosci Nanotechnol; 2004 Apr; 4(4):346-59. PubMed ID: 15296224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structure and activity relationship for single-walled carbon nanotube growth confirmed by
    Chao HY; Jiang H; Ospina-Acevedo F; Balbuena PB; Kauppinen EI; Cumings J; Sharma R
    Nanoscale; 2020 Nov; 12(42):21923-21931. PubMed ID: 33112348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube nucleation driven by catalyst morphology dynamics.
    Pigos E; Penev ES; Ribas MA; Sharma R; Yakobson BI; Harutyunyan AR
    ACS Nano; 2011 Dec; 5(12):10096-101. PubMed ID: 22082229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic-scale imaging of carbon nanofibre growth.
    Helveg S; López-Cartes C; Sehested J; Hansen PL; Clausen BS; Rostrup-Nielsen JR; Abild-Pedersen F; Nørskov JK
    Nature; 2004 Jan; 427(6973):426-9. PubMed ID: 14749826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-walled carbon nanotube diameter.
    Jost O; Gorbunov A; Liu X; Pompe W; Fink J
    J Nanosci Nanotechnol; 2004 Apr; 4(4):433-40. PubMed ID: 15296234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice.
    Cao K; Skowron ST; Stoppiello CT; Biskupek J; Khlobystov AN; Kaiser U
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):22922-22927. PubMed ID: 32918781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement of single-walled carbon nanotube bundles by intertube bridging.
    Kis A; Csányi G; Salvetat JP; Lee TN; Couteau E; Kulik AJ; Benoit W; Brugger J; Forró L
    Nat Mater; 2004 Mar; 3(3):153-7. PubMed ID: 14991016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Correlation of Carbon Nanotube Nucleation and Growth with the Atomic Structure of Rhenium Nanocatalysts Stimulated and Imaged by the Electron Beam.
    Cao K; Chamberlain TW; Biskupek J; Zoberbier T; Kaiser U; Khlobystov AN
    Nano Lett; 2018 Oct; 18(10):6334-6339. PubMed ID: 30185052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying individual single-walled and double-walled carbon nanotubes by atomic force microscopy.
    DeBorde T; Joiner JC; Leyden MR; Minot ED
    Nano Lett; 2008 Nov; 8(11):3568-71. PubMed ID: 18811211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoenvelopes: Wrapping a Single-Walled Carbon Nanotube with Graphene using an Atomic Force Microscope.
    Hu X; Wei H; Liu J; Zhang J; Chi X; Jiang P; Sun L
    Adv Mater; 2019 Nov; 31(45):e1804918. PubMed ID: 30300443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of Supported and Unsupported Catalytic Rh Nanoparticles: Effects on Nucleation of Single-Walled Carbon Nanotubes.
    Gomez-Ballesteros JL; Balbuena PB
    Langmuir; 2017 Oct; 33(42):11109-11119. PubMed ID: 28709379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Visualization of Atomic-Scale Graphene Growth on Cu through Environmental Transmission Electron Microscopy.
    Liu Y; Xu L; Zhang L; Dong Z; Wang S; Luo L
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):52201-52207. PubMed ID: 33147010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic property investigations of single-walled carbon nanotube bundles in situ within a transmission electron microscope: an evaluation.
    Aslam Z; Abraham M; Brown A; Rand B; Brydson R
    J Microsc; 2008 Jul; 231(Pt 1):144-55. PubMed ID: 18638198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors.
    Khalilov U; Bogaerts A; Neyts EC
    Nat Commun; 2015 Dec; 6():10306. PubMed ID: 26691537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.