These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25329836)

  • 21. High Performance Polymer/Ionic Liquid Thermoplastic Solid Electrolyte Prepared by Solvent Free Processing for Solid State Lithium Metal Batteries.
    González F; Tiemblo P; García N; Garcia-Calvo O; Fedeli E; Kvasha A; Urdampilleta I
    Membranes (Basel); 2018 Aug; 8(3):. PubMed ID: 30072669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries.
    Wu Z; Xie Z; Yoshida A; Wang J; Yu T; Wang Z; Hao X; Abudula A; Guan G
    J Colloid Interface Sci; 2020 Apr; 565():110-118. PubMed ID: 31935584
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NonAqueous, Metal-Free, and Hybrid Electrolyte Li-Ion O
    Deng H; Qiao Y; Wu S; Qiu F; Zhang N; He P; Zhou H
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4908-4914. PubMed ID: 30387593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations.
    Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Rate Long Cycle-Life Li-Air Battery Aided by Bifunctional InX
    Rastegar S; Hemmat Z; Zhang C; Plunkett S; Wen J; Dandu N; Rojas T; Majidi L; Misal SN; Ngo AT; Curtiss LA; Salehi-Khojin A
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4915-4922. PubMed ID: 33480245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical and electron microscopic characterization of Super-P based cathodes for Li-O2 batteries.
    Marinaro M; Eswara Moorthy SK; Bernhard J; Jörissen L; Wohlfahrt-Mehrens M; Kaiser U
    Beilstein J Nanotechnol; 2013; 4():665-70. PubMed ID: 24205461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Reactivity of a Carbonaceous Cathode in a Lithium Triflate/Ether Electrolyte-Based Li-O2 Cell.
    Carboni M; Brutti S; Marrani AG
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21751-62. PubMed ID: 26375042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Composite Cathode Architecture with Improved Oxidation Kinetics in Polymer-Based Li-O
    Mushtaq M; Guo X; Wang Y; Hao L; Lin Z; Yu H
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30259-30267. PubMed ID: 32525303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elucidation and Comparison of the Effect of LiTFSI and LiNO
    Iliksu M; Khetan A; Yang S; Simon U; Pitsch H; Sauer DU
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19319-19325. PubMed ID: 28485949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LiTFSI Concentration Optimization in TEGDME Solvent for Lithium-Oxygen Batteries.
    Chen J; Chen C; Huang T; Yu A
    ACS Omega; 2019 Dec; 4(24):20708-20714. PubMed ID: 31858056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability of Glyme Solvate Ionic Liquid as an Electrolyte for Rechargeable Li-O
    Kwon HM; Thomas ML; Tatara R; Oda Y; Kobayashi Y; Nakanishi A; Ueno K; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6014-6021. PubMed ID: 28121136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stabilizing Li
    Zheng B; Zhu J; Wang H; Feng M; Umeshbabu E; Li Y; Wu QH; Yang Y
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25473-25482. PubMed ID: 29989392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pore-Scale Simulations of Porous Electrodes of Li-O
    Wang F; Li X
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26222-26232. PubMed ID: 30009605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry.
    McCloskey BD; Bethune DS; Shelby RM; Girishkumar G; Luntz AC
    J Phys Chem Lett; 2011 May; 2(10):1161-6. PubMed ID: 26295320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relevant Features of a Triethylene Glycol Dimethyl Ether-Based Electrolyte for Application in Lithium Battery.
    Carbone L; Di Lecce D; Gobet M; Munoz S; Devany M; Greenbaum S; Hassoun J
    ACS Appl Mater Interfaces; 2017 May; 9(20):17085-17095. PubMed ID: 28440629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heteroatom Si Substituent Imidazolium-Based Ionic Liquid Electrolyte Boosts the Performance of Dendrite-Free Lithium Batteries.
    Chen N; Guan Y; Shen J; Guo C; Qu W; Li Y; Wu F; Chen R
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):12154-12160. PubMed ID: 30835104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.
    Lim HK; Lim HD; Park KY; Seo DH; Gwon H; Hong J; Goddard WA; Kim H; Kang K
    J Am Chem Soc; 2013 Jul; 135(26):9733-42. PubMed ID: 23758262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complete Decomposition of Li
    Song S; Xu W; Zheng J; Luo L; Engelhard MH; Bowden ME; Liu B; Wang CM; Zhang JG
    Nano Lett; 2017 Mar; 17(3):1417-1424. PubMed ID: 28186765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.