BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 25330047)

  • 1. Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass.
    He F; Liao Y; Lin J; Song J; Qiao L; Cheng Y; Sugioka K
    Sensors (Basel); 2014 Oct; 14(10):19402-40. PubMed ID: 25330047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass.
    Sugioka K; Xu J; Wu D; Hanada Y; Wang Z; Cheng Y; Midorikawa K
    Lab Chip; 2014 Sep; 14(18):3447-58. PubMed ID: 25012238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond laser processing for optofluidic fabrication.
    Sugioka K; Cheng Y
    Lab Chip; 2012 Oct; 12(19):3576-89. PubMed ID: 22820547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration.
    Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K
    Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.
    Liao Y; Song J; Li E; Luo Y; Shen Y; Chen D; Cheng Y; Xu Z; Sugioka K; Midorikawa K
    Lab Chip; 2012 Feb; 12(4):746-9. PubMed ID: 22231027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond Laser Direct Writing of Flexible Electronic Devices: A Mini Review.
    Wang S; Yang J; Deng G; Zhou S
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing.
    Xu J; Wu D; Hanada Y; Chen C; Wu S; Cheng Y; Sugioka K; Midorikawa K
    Lab Chip; 2013 Dec; 13(23):4608-16. PubMed ID: 24104603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.
    Chandrahalim H; Chen Q; Said AA; Dugan M; Fan X
    Lab Chip; 2015 May; 15(10):2335-40. PubMed ID: 25904381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining.
    Song J; Lin J; Tang J; Liao Y; He F; Wang Z; Qiao L; Sugioka K; Cheng Y
    Opt Express; 2014 Jun; 22(12):14792-802. PubMed ID: 24977574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid fabrication of high-resolution multi-scale microfluidic devices based on the scanning of patterned femtosecond laser.
    Zhang C; Zhang J; Chen R; Li J; Wang C; Cao R; Zhang J; Ye H; Zhai H; Sugioka K
    Opt Lett; 2020 Jul; 45(14):3929-3932. PubMed ID: 32667321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser-induced microstructures in glasses and applications in micro-optics.
    Qiu J
    Chem Rec; 2004; 4(1):50-8. PubMed ID: 15057868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Manufacturing of Glass Microstructures Using Femtosecond Laser.
    Butkutė A; Jonušauskas L
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33925098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond laser direct writing of a 3D microcantilever on the tip of an optical fiber sensor for on-chip optofluidic sensing.
    Li C; Liu Y; Lang C; Zhang Y; Qu S
    Lab Chip; 2022 Sep; 22(19):3734-3743. PubMed ID: 36039614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond laser hybrid fabrication of a 3D microfluidic chip for PCR application.
    Shan C; Zhang C; Liang J; Yang Q; Bian H; Yong J; Hou X; Chen F
    Opt Express; 2020 Aug; 28(18):25716-25722. PubMed ID: 32906856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering sensor on an optical fiber probe fabricated with a femtosecond laser.
    Ma X; Huo H; Wang W; Tian Y; Wu N; Guthy C; Shen M; Wang X
    Sensors (Basel); 2010; 10(12):11064-71. PubMed ID: 22163512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication.
    Xu B; Du WQ; Li JW; Hu YL; Yang L; Zhang CC; Li GQ; Lao ZX; Ni JC; Chu JR; Wu D; Liu SL; Sugioka K
    Sci Rep; 2016 Jan; 6():19989. PubMed ID: 26818119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.
    Kim M; Hwang DJ; Jeon H; Hiromatsu K; Grigoropoulos CP
    Lab Chip; 2009 Jan; 9(2):311-8. PubMed ID: 19107290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors.
    Yuan LL; Herman PR
    Sci Rep; 2016 Feb; 6():22294. PubMed ID: 26922872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing.
    Xu BB; Zhang YL; Xia H; Dong WF; Ding H; Sun HB
    Lab Chip; 2013 May; 13(9):1677-90. PubMed ID: 23493958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.