BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25330107)

  • 1. Human annexins A1, A2, and A8 as potential molecular targets for Ni(II) ions.
    Wezynfeld NE; Bossak K; Goch W; Bonna A; Bal W; Frączyk T
    Chem Res Toxicol; 2014 Nov; 27(11):1996-2009. PubMed ID: 25330107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conserved core domains of annexins A1, A2, A5, and B12 can be divided into two groups with different Ca2+-dependent membrane-binding properties.
    Patel DR; Isas JM; Ladokhin AS; Jao CC; Kim YE; Kirsch T; Langen R; Haigler HT
    Biochemistry; 2005 Mar; 44(8):2833-44. PubMed ID: 15723527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into S100 target specificity examined by a new interaction between S100A11 and annexin A2.
    Rintala-Dempsey AC; Santamaria-Kisiel L; Liao Y; Lajoie G; Shaw GS
    Biochemistry; 2006 Dec; 45(49):14695-705. PubMed ID: 17144662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function correlations of calcium binding and calcium channel activities based on 3-dimensional models of human annexins I, II, III, V and VII.
    Chen JM; Sheldon A; Pincus MR
    J Biomol Struct Dyn; 1993 Jun; 10(6):1067-89. PubMed ID: 8395183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-specific Cu(II)-dependent peptide bond hydrolysis: similarities and differences with the Ni(II)-dependent reaction.
    Belczyk-Ciesielska A; Zawisza IA; Mital M; Bonna A; Bal W
    Inorg Chem; 2014 May; 53(9):4639-46. PubMed ID: 24735221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive interaction of dicalcin with annexins in frog olfactory and respiratory cilia.
    Uebi T; Miwa N; Kawamura S
    FEBS J; 2007 Sep; 274(18):4863-76. PubMed ID: 17714509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective peptide bond hydrolysis of cysteine peptides in the presence of Ni(II) ions.
    Protas AM; Bonna A; Kopera E; Bal W
    J Inorg Biochem; 2011 Jan; 105(1):10-6. PubMed ID: 21134597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering: reaction conditions and molecular mechanism.
    Kopera E; Krezel A; Protas AM; Belczyk A; Bonna A; Wysłouch-Cieszyńska A; Poznański J; Bal W
    Inorg Chem; 2010 Jul; 49(14):6636-45. PubMed ID: 20550138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual catalytic role of the metal ion in nickel-assisted peptide bond hydrolysis.
    Podobas EI; Bonna A; Polkowska-Nowakowska A; Bal W
    J Inorg Biochem; 2014 Jul; 136():107-14. PubMed ID: 24726232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination of Ni2+ and Cu2+ to metal ion binding domains of E. coli SlyD protein.
    Witkowska D; Valensin D; Rowinska-Zyrek M; Karafova A; Kamysz W; Kozlowski H
    J Inorg Biochem; 2012 Feb; 107(1):73-81. PubMed ID: 22178668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel(II) binding to Cap43 protein fragments.
    Zoroddu MA; Peana M; Kowalik-Jankowska T; Kozlowski H; Costa M
    J Inorg Biochem; 2004 Jun; 98(6):931-9. PubMed ID: 15149799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering. Combinatorial library determination of optimal sequences.
    Krezel A; Kopera E; Protas AM; Poznański J; Wysłouch-Cieszyńska A; Bal W
    J Am Chem Soc; 2010 Mar; 132(10):3355-66. PubMed ID: 20166730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annexins I, II and III are specific choline binding proteins.
    Zimmerman UJ; Hennigan BB; Liu L; Campbell CH; Fisher AB
    Biochem Mol Biol Int; 1995 Feb; 35(2):307-15. PubMed ID: 7663385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination properties of Cu(II) and Ni(II) ions towards the C-terminal peptide fragment -TYTEHA- of histone H4.
    Karavelas T; Malandrinos G; Hadjiliadis N; Mlynarz P; Kozlowski H; Barsan M; Butler I
    Dalton Trans; 2008 Mar; (9):1215-23. PubMed ID: 18283382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing.
    Lennon NJ; Kho A; Bacskai BJ; Perlmutter SL; Hyman BT; Brown RH
    J Biol Chem; 2003 Dec; 278(50):50466-73. PubMed ID: 14506282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination of copper(II) ions by the fragments of neuropeptide gamma containing D1, H9, H12 residues and products of copper-catalyzed oxidation.
    Jankowska E; Pietruszka M; Kowalik-Jankowska T
    Dalton Trans; 2012 Feb; 41(6):1683-94. PubMed ID: 22159001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-specific Ni(II)-dependent peptide bond hydrolysis in a peptide containing threonine and histidine residues.
    Krezel A; Mylonas M; Kopera E; Bal W
    Acta Biochim Pol; 2006; 53(4):721-7. PubMed ID: 17117212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering: active sequence optimization.
    Protas AM; Ariani HH; Bonna A; Polkowska-Nowakowska A; Poznański J; Bal W
    J Inorg Biochem; 2013 Oct; 127():99-106. PubMed ID: 23973681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide Bond Cleavage by Ni(II) Ions within the Nuclear Localization Signal Sequence.
    Frączyk T; Bonna A; Stefaniak E; Wezynfeld NE; Bal W
    Chem Biodivers; 2020 Feb; 17(2):e1900652. PubMed ID: 31869504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ni(II) and Cu(II) binding with a 14-aminoacid sequence of Cap43 protein, TRSRSHTSEGTRSR.
    Zoroddu MA; Kowalik-Jankowska T; Kozlowski H; Salnikow K; Costa M
    J Inorg Biochem; 2001 Mar; 84(1-2):47-54. PubMed ID: 11330481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.