These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations. Nguyen P; Derreumaux P Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046 [TBL] [Abstract][Full Text] [Related]
3. Elongation affinity, activation barrier, and stability of Aβ42 oligomers/fibrils in physiological saline. Rodriguez RA; Chen LY; Plascencia-Villa G; Perry G Biochem Biophys Res Commun; 2017 May; 487(2):444-449. PubMed ID: 28427941 [TBL] [Abstract][Full Text] [Related]
4. Disordered versus fibril-like amyloid β (25-35) dimers in water: structure and thermodynamics. Kittner M; Knecht V J Phys Chem B; 2010 Nov; 114(46):15288-95. PubMed ID: 20964446 [TBL] [Abstract][Full Text] [Related]
5. Nucleation process of a fibril precursor in the C-terminal segment of amyloid-β. Baftizadeh F; Pietrucci F; Biarnés X; Laio A Phys Rev Lett; 2013 Apr; 110(16):168103. PubMed ID: 23679641 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of Nucleation and Growth of Aβ40 Fibrils from All-Atom and Coarse-Grained Simulations. Sasmal S; Schwierz N; Head-Gordon T J Phys Chem B; 2016 Dec; 120(47):12088-12097. PubMed ID: 27806205 [TBL] [Abstract][Full Text] [Related]
7. Understanding Amyloid-β Oligomerization at the Molecular Level: The Role of the Fibril Surface. Barz B; Strodel B Chemistry; 2016 Jun; 22(26):8768-72. PubMed ID: 27135646 [TBL] [Abstract][Full Text] [Related]
9. N-Terminus Binding Preference for Either Tanshinone or Analogue in Both Inhibition of Amyloid Aggregation and Disaggregation of Preformed Amyloid Fibrils-Toward Introducing a Kind of Novel Anti-Alzheimer Compounds. Dong M; Zhao W; Hu D; Ai H; Kang B ACS Chem Neurosci; 2017 Jul; 8(7):1577-1588. PubMed ID: 28406293 [TBL] [Abstract][Full Text] [Related]
10. Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach. Rosenman DJ; Connors CR; Chen W; Wang C; García AE J Mol Biol; 2013 Sep; 425(18):3338-59. PubMed ID: 23811057 [TBL] [Abstract][Full Text] [Related]
11. Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics. Rojas A; Maisuradze N; Kachlishvili K; Scheraga HA; Maisuradze GG ACS Chem Neurosci; 2017 Jan; 8(1):201-209. PubMed ID: 28095675 [TBL] [Abstract][Full Text] [Related]
17. Ca(2+), within the physiological concentrations, selectively accelerates Abeta42 fibril formation and not Abeta40 in vitro. Ahmad A; Muzaffar M; Ingram VM Biochim Biophys Acta; 2009 Oct; 1794(10):1537-48. PubMed ID: 19595795 [TBL] [Abstract][Full Text] [Related]
18. One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of Aβ40 and Aβ42. Dovidchenko NV; Glyakina AV; Selivanova OM; Grigorashvili EI; Suvorina MY; Dzhus UF; Mikhailina AO; Shiliaev NG; Marchenkov VV; Surin AK; Galzitskaya OV J Struct Biol; 2016 Jun; 194(3):404-14. PubMed ID: 27016282 [TBL] [Abstract][Full Text] [Related]
19. Amyloid assembly is dominated by misregistered kinetic traps on an unbiased energy landscape. Jia Z; Schmit JD; Chen J Proc Natl Acad Sci U S A; 2020 May; 117(19):10322-10328. PubMed ID: 32345723 [TBL] [Abstract][Full Text] [Related]
20. Characterizing amyloid-beta protein misfolding from molecular dynamics simulations with explicit water. Lee C; Ham S J Comput Chem; 2011 Jan; 32(2):349-55. PubMed ID: 20734314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]