These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25330456)

  • 1. Microfluidic single-cell analysis links boundary environments and individual microbial phenotypes.
    Dusny C; Schmid A
    Environ Microbiol; 2015 Jun; 17(6):1839-56. PubMed ID: 25330456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
    Grünberger A; Probst C; Helfrich S; Nanda A; Stute B; Wiechert W; von Lieres E; Nöh K; Frunzke J; Kohlheyer D
    Cytometry A; 2015 Dec; 87(12):1101-15. PubMed ID: 26348020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes.
    Probst C; Grünberger A; Wiechert W; Kohlheyer D
    J Microbiol Methods; 2013 Dec; 95(3):470-6. PubMed ID: 24041615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial single-cell analysis in picoliter-sized batch cultivation chambers.
    Kaganovitch E; Steurer X; Dogan D; Probst C; Wiechert W; Kohlheyer D
    N Biotechnol; 2018 Dec; 47():50-59. PubMed ID: 29550523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments.
    Fritzsch FS; Rosenthal K; Kampert A; Howitz S; Dusny C; Blank LM; Schmid A
    Lab Chip; 2013 Feb; 13(3):397-408. PubMed ID: 23223864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Single-Cell Cultivation on Microfluidic Streak Plates.
    Jiang CY; Dong L; Zhao JK; Hu X; Shen C; Qiao Y; Zhang X; Wang Y; Ismagilov RF; Liu SJ; Du W
    Appl Environ Microbiol; 2016 Feb; 82(7):2210-8. PubMed ID: 26850294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Cell Physiology.
    Taheri-Araghi S; Brown SD; Sauls JT; McIntosh DB; Jun S
    Annu Rev Biophys; 2015; 44():123-42. PubMed ID: 25747591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation.
    Hornung R; Grünberger A; Westerwalbesloh C; Kohlheyer D; Gompper G; Elgeti J
    J R Soc Interface; 2018 Feb; 15(139):. PubMed ID: 29445038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in single cell manipulation and biochemical analysis on microfluidics.
    Gao D; Jin F; Zhou M; Jiang Y
    Analyst; 2019 Jan; 144(3):766-781. PubMed ID: 30298867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. dMSCC: a microfluidic platform for microbial single-cell cultivation of
    Täuber S; Golze C; Ho P; von Lieres E; Grünberger A
    Lab Chip; 2020 Nov; 20(23):4442-4455. PubMed ID: 33095214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Single-Cell Analytics.
    Dusny C
    Adv Biochem Eng Biotechnol; 2022; 179():159-189. PubMed ID: 32737554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital Microfluidics for Manipulation and Analysis of a Single Cell.
    He JL; Chen AT; Lee JH; Fan SK
    Int J Mol Sci; 2015 Sep; 16(9):22319-32. PubMed ID: 26389890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices.
    Prakadan SM; Shalek AK; Weitz DA
    Nat Rev Genet; 2017 Jun; 18(6):345-361. PubMed ID: 28392571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical bias of microcultivation environments on single-cell physiology.
    Dusny C; Grünberger A; Probst C; Wiechert W; Kohlheyer D; Schmid A
    Lab Chip; 2015 Apr; 15(8):1822-34. PubMed ID: 25710324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics and single-cell microscopy to study stochastic processes in bacteria.
    Potvin-Trottier L; Luro S; Paulsson J
    Curr Opin Microbiol; 2018 Jun; 43():186-192. PubMed ID: 29494845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell analysis of mycobacteria using microfluidics and time-lapse microscopy.
    Dhar N; Manina G
    Methods Mol Biol; 2015; 1285():241-56. PubMed ID: 25779320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic single-cell analysis in biotechnology: from monitoring towards understanding.
    Dusny C; Grünberger A
    Curr Opin Biotechnol; 2020 Jun; 63():26-33. PubMed ID: 31809975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.
    Grünberger A; Paczia N; Probst C; Schendzielorz G; Eggeling L; Noack S; Wiechert W; Kohlheyer D
    Lab Chip; 2012 May; 12(11):2060-8. PubMed ID: 22511122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.