BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25330975)

  • 1. Molecular docking to flexible targets.
    Sørensen J; Demir Ö; Swift RV; Feher VA; Amaro RE
    Methods Mol Biol; 2015; 1215():445-69. PubMed ID: 25330975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs.
    Tarcsay A; Paragi G; Vass M; Jójárt B; Bogár F; Keserű GM
    J Chem Inf Model; 2013 Nov; 53(11):2990-9. PubMed ID: 24116387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRDOCK: an ultrafast multipurpose protein-ligand docking tool.
    Cortés Cabrera Á; Klett J; Dos Santos HG; Perona A; Gil-Redondo R; Francis SM; Priego EM; Gago F; Morreale A
    J Chem Inf Model; 2012 Aug; 52(8):2300-9. PubMed ID: 22764680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating sampling techniques and inverse virtual screening: toward the discovery of artificial peptide-based receptors for ligands.
    Pérez GM; Salomón LA; Montero-Cabrera LA; de la Vega JM; Mascini M
    Mol Divers; 2016 May; 20(2):421-38. PubMed ID: 26553204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular docking methodologies.
    Bortolato A; Fanton M; Mason JS; Moro S
    Methods Mol Biol; 2013; 924():339-60. PubMed ID: 23034755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments.
    Craig IR; Essex JW; Spiegel K
    J Chem Inf Model; 2010 Apr; 50(4):511-24. PubMed ID: 20222690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein tyrosine phosphatases: Ligand interaction analysis and optimisation of virtual screening.
    Ghattas MA; Atatreh N; Bichenkova EV; Bryce RA
    J Mol Graph Model; 2014 Jul; 52():114-23. PubMed ID: 25038507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of virtual screening results by docking data feature analysis.
    Arciniega M; Lange OF
    J Chem Inf Model; 2014 May; 54(5):1401-11. PubMed ID: 24796936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Monte Carlo-based receptor ensemble docking to virtual screening for GPCR ligands.
    Vilar S; Costanzi S
    Methods Enzymol; 2013; 522():263-78. PubMed ID: 23374190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
    Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C
    J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the use of molecular dynamics receptor conformations for virtual screening.
    Nichols SE; Baron R; McCammon JA
    Methods Mol Biol; 2012; 819():93-103. PubMed ID: 22183532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic and efficient side chain optimization for molecular docking using a cheapest-path procedure.
    Schumann M; Armen RS
    J Comput Chem; 2013 May; 34(14):1258-69. PubMed ID: 23420703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FlexAID: Revisiting Docking on Non-Native-Complex Structures.
    Gaudreault F; Najmanovich RJ
    J Chem Inf Model; 2015 Jul; 55(7):1323-36. PubMed ID: 26076070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein flexibility in virtual screening: the BACE-1 case study.
    Cosconati S; Marinelli L; Di Leva FS; La Pietra V; De Simone A; Mancini F; Andrisano V; Novellino E; Goodsell DS; Olson AJ
    J Chem Inf Model; 2012 Oct; 52(10):2697-704. PubMed ID: 23005250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recipes for the selection of experimental protein conformations for virtual screening.
    Rueda M; Bottegoni G; Abagyan R
    J Chem Inf Model; 2010 Jan; 50(1):186-93. PubMed ID: 20000587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations.
    Dixit A; Verkhivker GM
    J Chem Inf Model; 2012 Oct; 52(10):2501-15. PubMed ID: 22992037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble-based docking using biased molecular dynamics.
    Campbell AJ; Lamb ML; Joseph-McCarthy D
    J Chem Inf Model; 2014 Jul; 54(7):2127-38. PubMed ID: 24881672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.