These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25330975)

  • 21. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Docking ligands into flexible and solvated macromolecules. 7. Impact of protein flexibility and water molecules on docking-based virtual screening accuracy.
    Therrien E; Weill N; Tomberg A; Corbeil CR; Lee D; Moitessier N
    J Chem Inf Model; 2014 Nov; 54(11):3198-210. PubMed ID: 25280064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boosting virtual screening enrichments with data fusion: coalescing hits from two-dimensional fingerprints, shape, and docking.
    Sastry GM; Inakollu VS; Sherman W
    J Chem Inf Model; 2013 Jul; 53(7):1531-42. PubMed ID: 23782297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DOCKTITE-a highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment.
    Scholz C; Knorr S; Hamacher K; Schmidt B
    J Chem Inf Model; 2015 Feb; 55(2):398-406. PubMed ID: 25541749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reranking docking poses using molecular simulations and approximate free energy methods.
    Lauro G; Ferruz N; Fulle S; Harvey MJ; Finn PW; De Fabritiis G
    J Chem Inf Model; 2014 Aug; 54(8):2185-9. PubMed ID: 25046765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alternative quality assessment strategy to compare performances of GPCR-ligand docking protocols: the human adenosine A(2A) receptor as a case study.
    Ciancetta A; Cuzzolin A; Moro S
    J Chem Inf Model; 2014 Aug; 54(8):2243-54. PubMed ID: 25046649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using consensus-shape clustering to identify promiscuous ligands and protein targets and to choose the right query for shape-based virtual screening.
    Pérez-Nueno VI; Ritchie DW
    J Chem Inf Model; 2011 Jun; 51(6):1233-48. PubMed ID: 21604699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Docking and Virtual Screening Strategies for GPCR Drug Discovery.
    Beuming T; Lenselink B; Pala D; McRobb F; Repasky M; Sherman W
    Methods Mol Biol; 2015; 1335():251-76. PubMed ID: 26260606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example.
    Mahasenan KV; Li C
    J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Negative Image-Based Screening: Rigid Docking Using Cavity Information.
    Postila PA; Kurkinen ST; Pentikäinen OT
    Methods Mol Biol; 2021; 2266():125-140. PubMed ID: 33759124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of the CXCR4 structure on docking-based virtual screening of HIV entry inhibitors.
    Planesas JM; Pérez-Nueno VI; Borrell JI; Teixidó J
    J Mol Graph Model; 2012 Sep; 38():123-36. PubMed ID: 23079643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ensemble docking-based virtual screening yields novel spirocyclic JAK1 inhibitors.
    Bajusz D; Ferenczy GG; Keserű GM
    J Mol Graph Model; 2016 Nov; 70():275-283. PubMed ID: 27771575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An improved relaxed complex scheme for receptor flexibility in computer-aided drug design.
    Amaro RE; Baron R; McCammon JA
    J Comput Aided Mol Des; 2008 Sep; 22(9):693-705. PubMed ID: 18196463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential and limitations of ensemble docking.
    Korb O; Olsson TS; Bowden SJ; Hall RJ; Verdonk ML; Liebeschuetz JW; Cole JC
    J Chem Inf Model; 2012 May; 52(5):1262-74. PubMed ID: 22482774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How to choose relevant multiple receptor conformations for virtual screening: a test case of Cdk2 and normal mode analysis.
    Sperandio O; Mouawad L; Pinto E; Villoutreix BO; Perahia D; Miteva MA
    Eur Biophys J; 2010 Aug; 39(9):1365-72. PubMed ID: 20237920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Testing a flexible-receptor docking algorithm in a model binding site.
    Wei BQ; Weaver LH; Ferrari AM; Matthews BW; Shoichet BK
    J Mol Biol; 2004 Apr; 337(5):1161-82. PubMed ID: 15046985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complementarity between in silico and biophysical screening approaches in fragment-based lead discovery against the A(2A) adenosine receptor.
    Chen D; Ranganathan A; IJzerman AP; Siegal G; Carlsson J
    J Chem Inf Model; 2013 Oct; 53(10):2701-14. PubMed ID: 23971943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How to improve docking accuracy of AutoDock4.2: a case study using different electrostatic potentials.
    Hou X; Du J; Zhang J; Du L; Fang H; Li M
    J Chem Inf Model; 2013 Jan; 53(1):188-200. PubMed ID: 23244516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Representing receptor flexibility in ligand docking through relevant normal modes.
    Cavasotto CN; Kovacs JA; Abagyan RA
    J Am Chem Soc; 2005 Jul; 127(26):9632-40. PubMed ID: 15984891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.