These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 25331199)
1. Antibacterial adhesion of borneol-based polymer via surface chiral stereochemistry. Luo L; Li G; Luan D; Yuan Q; Wei Y; Wang X ACS Appl Mater Interfaces; 2014; 6(21):19371-7. PubMed ID: 25331199 [TBL] [Abstract][Full Text] [Related]
2. Antifouling and Antibacterial Polymer-Coated Surfaces Based on the Combined Effect of Zwitterions and the Natural Borneol. Cheng Q; Asha AB; Liu Y; Peng YY; Diaz-Dussan D; Shi Z; Cui Z; Narain R ACS Appl Mater Interfaces; 2021 Feb; 13(7):9006-9014. PubMed ID: 33576614 [TBL] [Abstract][Full Text] [Related]
3. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Li M; Neoh KG; Xu LQ; Wang R; Kang ET; Lau T; Olszyna DP; Chiong E Langmuir; 2012 Nov; 28(47):16408-22. PubMed ID: 23121175 [TBL] [Abstract][Full Text] [Related]
5. Responsive and "smart" antibacterial surfaces: common approaches and new developments (Review). Cavallaro A; Taheri S; Vasilev K Biointerphases; 2014 Jun; 9(2):029005. PubMed ID: 24985209 [TBL] [Abstract][Full Text] [Related]
6. Metal-Based Antibacterial Substrates for Biomedical Applications. Paladini F; Pollini M; Sannino A; Ambrosio L Biomacromolecules; 2015 Jul; 16(7):1873-85. PubMed ID: 26082968 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of biocompatible and efficient antimicrobial porous polymer surfaces by the Breath Figures approach. Vargas-Alfredo N; Martínez-Campos E; Santos-Coquillat A; Dorronsoro A; Cortajarena AL; Del Campo A; Rodríguez-Hernández J J Colloid Interface Sci; 2018 Mar; 513():820-830. PubMed ID: 29222981 [TBL] [Abstract][Full Text] [Related]
8. A hierarchical polymer brush coating with dual-function antibacterial capability. Yan S; Song L; Luan S; Xin Z; Du S; Shi H; Yuan S; Yang Y; Yin J Colloids Surf B Biointerfaces; 2017 Feb; 150():250-260. PubMed ID: 27839906 [TBL] [Abstract][Full Text] [Related]
9. Pinosylvin-Based Polymers: Biodegradable Poly(Anhydride-Esters) for Extended Release of Antibacterial Pinosylvin. Bien-Aime S; Yu W; Uhrich KE Macromol Biosci; 2016 Jul; 16(7):978-83. PubMed ID: 27071713 [TBL] [Abstract][Full Text] [Related]
10. Durable Antibacterial Cotton Fabrics Based on Natural Borneol-Derived Anti-MRSA Agents. Yang L; Zhan C; Huang X; Hong L; Fang L; Wang W; Su J Adv Healthc Mater; 2020 Jun; 9(11):e2000186. PubMed ID: 32338449 [TBL] [Abstract][Full Text] [Related]
11. In situ plasma fabrication of ceramic-like structure on polymeric implant with enhanced surface hardness, cytocompatibility and antibacterial capability. Liu J; Zhang W; Shi H; Yang K; Wang G; Wang P; Ji J; Chu PK J Biomed Mater Res A; 2016 May; 104(5):1102-12. PubMed ID: 26825052 [TBL] [Abstract][Full Text] [Related]
12. Antiadhesive and antibacterial multilayer films via layer-by-layer assembly of TMC/heparin complexes. Follmann HD; Martins AF; Gerola AP; Burgo TA; Nakamura CV; Rubira AF; Muniz EC Biomacromolecules; 2012 Nov; 13(11):3711-22. PubMed ID: 22998803 [TBL] [Abstract][Full Text] [Related]
13. Self-Adaptive Antibacterial Coating for Universal Polymeric Substrates Based on a Micrometer-Scale Hierarchical Polymer Brush System. Liu T; Yan S; Zhou R; Zhang X; Yang H; Yan Q; Yang R; Luan S ACS Appl Mater Interfaces; 2020 Sep; 12(38):42576-42585. PubMed ID: 32867474 [TBL] [Abstract][Full Text] [Related]
14. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity. Li W; Liu Q; Liu L J Biomater Sci Polym Ed; 2014; 25(14-15):1730-42. PubMed ID: 25136859 [TBL] [Abstract][Full Text] [Related]
15. Host-Guest Interaction-Mediated Photo/Temperature Dual-Controlled Antibacterial Surfaces. Ni Y; Zhang D; Wang Y; He X; He J; Wu H; Yuan J; Sha D; Che L; Tan J; Yang J ACS Appl Mater Interfaces; 2021 Mar; 13(12):14543-14551. PubMed ID: 33733728 [TBL] [Abstract][Full Text] [Related]
16. Hemocompatibility of pseudozwitterionic polymer brushes with a systematic well-defined charge-bias control. Jhong JF; Sin MC; Kung HH; Chinnathambi A; Alharbi SA; Chang Y J Biomater Sci Polym Ed; 2014; 25(14-15):1558-72. PubMed ID: 24894872 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous inhibition of planktonic and biofilm bacteria by self-adapting semiconducting polymer dots. Dai X; Ma J; Zhang Q; Xu Q; Yang L; Gao F J Mater Chem B; 2021 Sep; 9(33):6658-6667. PubMed ID: 34378630 [TBL] [Abstract][Full Text] [Related]
18. Chitosan Natural Polymer Material for Improving Antibacterial Properties of Textiles. Li J; Tian X; Hua T; Fu J; Koo M; Chan W; Poon T ACS Appl Bio Mater; 2021 May; 4(5):4014-4038. PubMed ID: 35006820 [TBL] [Abstract][Full Text] [Related]
19. A Smart Antibacterial Surface for the On-Demand Killing and Releasing of Bacteria. Wei T; Yu Q; Zhan W; Chen H Adv Healthc Mater; 2016 Feb; 5(4):449-56. PubMed ID: 26663668 [TBL] [Abstract][Full Text] [Related]
20. Influence of alkyl chain length on the surface activity of antibacterial polymers derived from ROMP. Altay E; Yapaöz MA; Keskin B; Yucesan G; Eren T Colloids Surf B Biointerfaces; 2015 Mar; 127():73-8. PubMed ID: 25646740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]