BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25331329)

  • 1. Akhirin regulates the proliferation and differentiation of neural stem cells in intact and injured mouse spinal cord.
    Abdulhaleem FA; Song X; Kawano R; Uezono N; Ito A; Ahmed G; Hossain M; Nakashima K; Tanaka H; Ohta K
    Dev Neurobiol; 2015 May; 75(5):494-504. PubMed ID: 25331329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord.
    Hamilton LK; Truong MK; Bednarczyk MR; Aumont A; Fernandes KJ
    Neuroscience; 2009 Dec; 164(3):1044-56. PubMed ID: 19747531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Akhirin regulates the proliferation and differentiation of neural stem cells/progenitor cells at neurogenic niches in mouse brain.
    Anam MB; Ahmad SAI; Kudo M; Istiaq A; Felemban AAM; Ito N; Ohta K
    Dev Growth Differ; 2020 Feb; 62(2):97-107. PubMed ID: 31943155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation.
    Rodriguez-Jimenez FJ; Alastrue-Agudo A; Stojkovic M; Erceg S; Moreno-Manzano V
    Int J Mol Sci; 2015 Nov; 16(11):26608-18. PubMed ID: 26561800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the neural niche by the soluble molecule Akhirin.
    Acharjee UK; Felemban AA; Riyadh AM; Ohta K
    Dev Growth Differ; 2016 Jun; 58(5):463-8. PubMed ID: 27134067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential.
    Fiorelli R; Cebrian-Silla A; Garcia-Verdugo JM; Raineteau O
    Glia; 2013 Dec; 61(12):2100-13. PubMed ID: 24123239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the Brain Neural Niche by Soluble Molecule Akhirin.
    Kudo M; Ohta K
    J Dev Biol; 2021 Jul; 9(3):. PubMed ID: 34449638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche.
    Marichal N; Reali C; Trujillo-Cenóz O; Russo RE
    Adv Exp Med Biol; 2017; 1041():55-79. PubMed ID: 29204829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connexin Signaling Is Involved in the Reactivation of a Latent Stem Cell Niche after Spinal Cord Injury.
    Fabbiani G; Reali C; Valentín-Kahan A; Rehermann MI; Fagetti J; Falco MV; Russo RE
    J Neurosci; 2020 Mar; 40(11):2246-2258. PubMed ID: 32001613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time.
    Li X; Floriddia EM; Toskas K; Fernandes KJL; Guérout N; Barnabé-Heider F
    EBioMedicine; 2016 Nov; 13():55-65. PubMed ID: 27818039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylprednisolone inhibits the proliferation of endogenous neural stem cells in nonhuman primates with spinal cord injury.
    Ye J; Qin Y; Tang Y; Ma M; Wang P; Huang L; Yang R; Chen K; Chai C; Wu Y; Shen H
    J Neurosurg Spine; 2018 Aug; 29(2):199-207. PubMed ID: 29775163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Spinal Ependymal Layer in Health and Disease.
    Moore SA
    Vet Pathol; 2016 Jul; 53(4):746-53. PubMed ID: 26792842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron microscopic study of the progeny of ependymal stem cells in the normal and injured spinal cord.
    Attar A; Kaptanoglu E; Aydin Z; Ayten M; Sargon MF
    Surg Neurol; 2005; 64 Suppl 2():S28-32. PubMed ID: 16256837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat.
    Mothe AJ; Tator CH
    Neuroscience; 2005; 131(1):177-87. PubMed ID: 15680701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ex vivo spinal cord injury model to study ependymal cells in adult mouse tissue.
    Fernandez-Zafra T; Codeluppi S; Uhlén P
    Exp Cell Res; 2017 Aug; 357(2):236-242. PubMed ID: 28587745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wnt/β-catenin signaling regulates ependymal cell development and adult homeostasis.
    Xing L; Anbarchian T; Tsai JM; Plant GW; Nusse R
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E5954-E5962. PubMed ID: 29891676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury.
    Ceruti S; Villa G; Genovese T; Mazzon E; Longhi R; Rosa P; Bramanti P; Cuzzocrea S; Abbracchio MP
    Brain; 2009 Aug; 132(Pt 8):2206-18. PubMed ID: 19528093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cells in the adult human spinal cord ependymal region do not proliferate after injury.
    Paniagua-Torija B; Norenberg M; Arevalo-Martin A; Carballosa-Gautam MM; Campos-Martin Y; Molina-Holgado E; Garcia-Ovejero D
    J Pathol; 2018 Dec; 246(4):415-421. PubMed ID: 30091291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone morphogenetic proteins mediate cellular response and, together with Noggin, regulate astrocyte differentiation after spinal cord injury.
    Xiao Q; Du Y; Wu W; Yip HK
    Exp Neurol; 2010 Feb; 221(2):353-66. PubMed ID: 20005873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural stem cells in the adult spinal cord.
    Sabelström H; Stenudd M; Frisén J
    Exp Neurol; 2014 Oct; 260():44-9. PubMed ID: 23376590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.