These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25331403)

  • 1. [Pathological changes in different parts of the larynx in canines following laryngeal burns induced by inhalation of hot air at various temperatures].
    Wang C; Zhao R; Zhang GA
    Beijing Da Xue Xue Bao Yi Xue Ban; 2014 Oct; 46(5):771-6. PubMed ID: 25331403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathological changes of the three clinical types of laryngeal burns based on a canine model.
    Cheng W; Ran Z; Wei L; La-na D; Xiao-zhuo Z; Yan-hua R; Fang-gang N; Guo-an Z
    Burns; 2014 Mar; 40(2):257-67. PubMed ID: 23891232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature distribution in the upper airway after inhalation injury.
    Rong YH; Liu W; Wang C; Ning FG; Zhang GA
    Burns; 2011 Nov; 37(7):1187-91. PubMed ID: 21816541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Morphological and pathological changes of larynx after severe laryngeal burn in dogs and their relationship with laryngostenosis].
    Liu B; Wan JB; Zhang GA
    Zhonghua Shao Shang Za Zhi; 2018 Aug; 34(8):549-555. PubMed ID: 30157560
    [No Abstract]   [Full Text] [Related]  

  • 5. Measuring surface temperature and grading pathological changes of airway tissue in a canine model of inhalational thermal injury.
    Zhao R; Di LN; Zhao XZ; Wang C; Zhang GA
    Burns; 2013 Jun; 39(4):767-75. PubMed ID: 23164648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laryngeal morphologic changes and epidemiology in patients with inhalation injury: a retrospective study.
    Fang-Gang N; Yang C; Yu-Xuan Q; Yan-Hua R; Wei-Li D; Cheng W; Chun-Quan W; Guo-An Z
    Burns; 2015 Sep; 41(6):1340-6. PubMed ID: 25791918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an in vivo model of laryngeal burn injury.
    Dion GR; Teng S; Bing R; Hiwatashi N; Amin MR; Branski RC
    Laryngoscope; 2017 Jan; 127(1):186-190. PubMed ID: 27305870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Larynx and cervical trachea in humidification and heating of inhaled gases.
    Dias NH; Martins RH; Braz JR; Carvalho LR
    Ann Otol Rhinol Laryngol; 2005 May; 114(5):411-5. PubMed ID: 15966531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voice Recovery in a Patient with Inhaled Laryngeal Burns.
    Kim GH; Wang SG; Lee YW; Kwon SB
    Iran J Otorhinolaryngol; 2019 Jan; 31(102):55-59. PubMed ID: 30783600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.
    Goodarzi-Ardakani V; Taeibi-Rahni M; Salimi MR; Ahmadi G
    Respir Physiol Neurobiol; 2016 Mar; 223():49-58. PubMed ID: 26777422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mucosal fluid evaporation is not the method of heat dissipation from fourth-degree laryngopharyngeal burns.
    Wan JB; Zhang GA; Qiu YX; Wen CQ; Fu TR
    Sci Rep; 2016 Jun; 6():28772. PubMed ID: 27349685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel device for tissue cooling during endoscopic laryngeal laser surgery: thermal damage study in an ex vivo calf model.
    Koo HJ; Burns JA; Kobler JB; Heaton JT; Zeitels SM
    Ann Otol Rhinol Laryngol; 2012 Jul; 121(7):485-9. PubMed ID: 22844869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laryngeal Thermal Injury Model.
    Dion GR; Pingree CS; Rico PJ; Christensen CL
    J Burn Care Res; 2020 May; 41(3):626-632. PubMed ID: 32087018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Surveillance and diagnosis of laryngeal burn].
    Zhang G; Wang G; Bao C
    Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi; 1999 Nov; 15(6):417-8. PubMed ID: 11501074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of clinical characteristics of 443 patients with inhalation injury].
    Ning F; Chang Y; Qiu Y; Rong Y; Du W; Cheng W; Wen C; Zhang G
    Zhonghua Shao Shang Za Zhi; 2014 Oct; 30(5):400-4. PubMed ID: 25572889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study.
    Burns JA; Kobler JB; Heaton JT; Lopez-Guerra G; Anderson RR; Zeitels SM
    Ann Otol Rhinol Laryngol; 2007 Nov; 116(11):853-7. PubMed ID: 18074672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airway burns and atelectasis in an adolescent following aspiration of molten wax.
    Einav S; Braverman I; Yatsiv I; Avital A; Rothschild M
    Ann Otol Rhinol Laryngol; 2000 Jul; 109(7):687-9. PubMed ID: 10903053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circulational heat dissipation of upper airway: Canine model of inhalational thermal injury.
    Zhao R; Di LN; Wen CQ; Ning FG; Zhang GA
    Burns; 2013 Sep; 39(6):1212-20. PubMed ID: 23523221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Types and patterns of response in the larynx following inhalation.
    Renne RA; Gideon KM
    Toxicol Pathol; 2006; 34(3):281-5. PubMed ID: 16698727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon black inhalation into the larynx and trachea.
    Snow JB
    Laryngoscope; 1970 Feb; 80(2):267-87. PubMed ID: 5416460
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.