These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 25331435)
1. Structure-based functional characterization of repressor of toxin (Rot), a central regulator of Staphylococcus aureus virulence. Killikelly A; Benson MA; Ohneck EA; Sampson JM; Jakoncic J; Spurrier B; Torres VJ; Kong XP J Bacteriol; 2015 Jan; 197(1):188-200. PubMed ID: 25331435 [TBL] [Abstract][Full Text] [Related]
2. Structure of Rot, a global regulator of virulence genes in Staphylococcus aureus. Zhu Y; Fan X; Zhang X; Jiang X; Niu L; Teng M; Li X Acta Crystallogr D Biol Crystallogr; 2014 Sep; 70(Pt 9):2467-76. PubMed ID: 25195759 [TBL] [Abstract][Full Text] [Related]
5. Rot and Agr system modulate fibrinogen-binding ability mainly by regulating clfB expression in Staphylococcus aureus NCTC8325. Xue T; You Y; Shang F; Sun B Med Microbiol Immunol; 2012 Feb; 201(1):81-92. PubMed ID: 21701848 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional regulation of virulence factors Spa and ClfB by the SpoVG-Rot cascade in Staphylococcus aureus. Zhu Q; Wen W; Wang W; Sun B Int J Med Microbiol; 2019 Jan; 309(1):39-53. PubMed ID: 30392856 [TBL] [Abstract][Full Text] [Related]
7. Staphylococcus aureus regulates the expression and production of the staphylococcal superantigen-like secreted proteins in a Rot-dependent manner. Benson MA; Lilo S; Wasserman GA; Thoendel M; Smith A; Horswill AR; Fraser J; Novick RP; Shopsin B; Torres VJ Mol Microbiol; 2011 Aug; 81(3):659-75. PubMed ID: 21651625 [TBL] [Abstract][Full Text] [Related]
8. Nutritional Regulation of the Sae Two-Component System by CodY in Staphylococcus aureus. Mlynek KD; Sause WE; Moormeier DE; Sadykov MR; Hill KR; Torres VJ; Bayles KW; Brinsmade SR J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378891 [No Abstract] [Full Text] [Related]
9. Role of Rot in bacterial autolysis regulation of Staphylococcus aureus NCTC8325. Chu X; Xia R; He N; Fang Y Res Microbiol; 2013 Sep; 164(7):695-700. PubMed ID: 23774059 [TBL] [Abstract][Full Text] [Related]
10. Regulation and characterization of rot transcription in Staphylococcus aureus. Manna AC; Ray B Microbiology (Reading); 2007 May; 153(Pt 5):1538-1545. PubMed ID: 17464068 [TBL] [Abstract][Full Text] [Related]
11. Coordinated and differential control of aureolysin (aur) and serine protease (sspA) transcription in Staphylococcus aureus by sarA, rot and agr (RNAIII). Oscarsson J; Tegmark-Wisell K; Arvidson S Int J Med Microbiol; 2006 Oct; 296(6):365-80. PubMed ID: 16782403 [TBL] [Abstract][Full Text] [Related]
12. Regulation of toxic shock syndrome toxin-1 by the accessory gene regulator in Staphylococcus aureus is mediated by the repressor of toxins. Tuffs SW; Herfst CA; Baroja ML; Podskalniy VA; DeJong EN; Coleman CEM; McCormick JK Mol Microbiol; 2019 Oct; 112(4):1163-1177. PubMed ID: 31321813 [TBL] [Abstract][Full Text] [Related]
13. Metabolic sensor governing bacterial virulence in Staphylococcus aureus. Ding Y; Liu X; Chen F; Di H; Xu B; Zhou L; Deng X; Wu M; Yang CG; Lan L Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4981-90. PubMed ID: 25368190 [TBL] [Abstract][Full Text] [Related]
14. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. Pragman AA; Yarwood JM; Tripp TJ; Schlievert PM J Bacteriol; 2004 Apr; 186(8):2430-8. PubMed ID: 15060046 [TBL] [Abstract][Full Text] [Related]
15. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus. Andrey DO; Jousselin A; Villanueva M; Renzoni A; Monod A; Barras C; Rodriguez N; Kelley WL PLoS One; 2015; 10(8):e0135579. PubMed ID: 26275216 [TBL] [Abstract][Full Text] [Related]
16. Rot repression of enterotoxin B expression in Staphylococcus aureus. Tseng CW; Stewart GC J Bacteriol; 2005 Aug; 187(15):5301-9. PubMed ID: 16030224 [TBL] [Abstract][Full Text] [Related]
17. The molecular mechanisms of allosteric mutations impairing MepR repressor function in multidrug-resistant strains of Staphylococcus aureus. Birukou I; Tonthat NK; Seo SM; Schindler BD; Kaatz GW; Brennan RG mBio; 2013 Aug; 4(5):e00528-13. PubMed ID: 23982071 [TBL] [Abstract][Full Text] [Related]
18. Repression of hla by rot is dependent on sae in Staphylococcus aureus. Li D; Cheung A Infect Immun; 2008 Mar; 76(3):1068-75. PubMed ID: 18174341 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional structure of MecI. Molecular basis for transcriptional regulation of staphylococcal methicillin resistance. García-Castellanos R; Marrero A; Mallorquí-Fernández G; Potempa J; Coll M; Gomis-Ruth FX J Biol Chem; 2003 Oct; 278(41):39897-905. PubMed ID: 12881514 [TBL] [Abstract][Full Text] [Related]
20. The chaperone ClpX stimulates expression of Staphylococcus aureus protein A by Rot dependent and independent pathways. Jelsbak L; Ingmer H; Valihrach L; Cohn MT; Christiansen MH; Kallipolitis BH; Frees D PLoS One; 2010 Sep; 5(9):e12752. PubMed ID: 20856878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]