These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 25331491)

  • 1. Advances in techniques for probing mechanoregulation of tissue morphogenesis.
    Sun J; Xiao Y; Wang S; Slepian MJ; Wong PK
    J Lab Autom; 2015 Apr; 20(2):127-37. PubMed ID: 25331491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing Hierarchical Nano- and Micro-Fabrication Technologies for Musculoskeletal Tissue Engineering.
    Abbah SA; Delgado LM; Azeem A; Fuller K; Shologu N; Keeney M; Biggs MJ; Pandit A; Zeugolis DI
    Adv Healthc Mater; 2015 Nov; 4(16):2488-99. PubMed ID: 26667589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis.
    Nerger BA; Siedlik MJ; Nelson CM
    Cell Mol Life Sci; 2017 May; 74(10):1819-1834. PubMed ID: 28008471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtechnology and nanotechnology in nerve repair.
    Chang WC; Kliot M; Sretavan DW
    Neurol Res; 2008 Dec; 30(10):1053-62. PubMed ID: 19079980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue assembly and organization: developmental mechanisms in microfabricated tissues.
    Rivron NC; Rouwkema J; Truckenmüller R; Karperien M; De Boer J; Van Blitterswijk CA
    Biomaterials; 2009 Oct; 30(28):4851-8. PubMed ID: 19592088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro- and nanotechnology in cardiovascular tissue engineering.
    Zhang B; Xiao Y; Hsieh A; Thavandiran N; Radisic M
    Nanotechnology; 2011 Dec; 22(49):494003. PubMed ID: 22101261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microplatforms for gradient field generation of various properties and biological applications.
    Kim SH; Lee GH; Park JY; Lee SH
    J Lab Autom; 2015 Apr; 20(2):82-95. PubMed ID: 25510472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration.
    Zhu W; O'Brien C; O'Brien JR; Zhang LG
    Nanomedicine (Lond); 2014 May; 9(6):859-75. PubMed ID: 24981651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering microscale topographies to control the cell-substrate interface.
    Nikkhah M; Edalat F; Manoucheri S; Khademhosseini A
    Biomaterials; 2012 Jul; 33(21):5230-46. PubMed ID: 22521491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometric control of capillary architecture via cell-matrix mechanical interactions.
    Sun J; Jamilpour N; Wang FY; Wong PK
    Biomaterials; 2014 Mar; 35(10):3273-80. PubMed ID: 24439400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue assembly guided via substrate biophysics: applications to hepatocellular engineering.
    Semler EJ; Ranucci CS; Moghe PV
    Adv Biochem Eng Biotechnol; 2006; 102():1-46. PubMed ID: 17089785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered approaches to the stem cell microenvironment for cardiac tissue regeneration.
    Ghafar-Zadeh E; Waldeisen JR; Lee LP
    Lab Chip; 2011 Sep; 11(18):3031-48. PubMed ID: 21785806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional microfabrication by two-photon polymerization technique.
    Ovsianikov A; Chichkov BN
    Methods Mol Biol; 2012; 868():311-25. PubMed ID: 22692619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Micro/nano-engineering to control growth of neuronal cells and tissue engineering applied to the central nervous system].
    Béduer A; Vaysse L; Loubinoux I; Vieu C
    Biol Aujourdhui; 2013; 207(4):291-307. PubMed ID: 24594577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro/nano-fabrication technologies for cell biology.
    Qian T; Wang Y
    Med Biol Eng Comput; 2010 Oct; 48(10):1023-32. PubMed ID: 20490938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Tissue development and construction and its regulational mechanism].
    Wang Y; Zhang Y; Fan D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):188-91. PubMed ID: 22404036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of microfabrication and hydrogel engineering for micro-organs on chips.
    Verhulsel M; Vignes M; Descroix S; Malaquin L; Vignjevic DM; Viovy JL
    Biomaterials; 2014 Feb; 35(6):1816-32. PubMed ID: 24314552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropatterning electrospun scaffolds to create intrinsic vascular networks.
    Jeffries EM; Nakamura S; Lee KW; Clampffer J; Ijima H; Wang Y
    Macromol Biosci; 2014 Nov; 14(11):1514-20. PubMed ID: 25142314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid microfabrication of nanofiber-based sheets and rods for tissue engineering applications.
    Park SH; Kim MS; Lee D; Choi YW; Kim DH; Suh KY
    J Lab Autom; 2013 Dec; 18(6):494-503. PubMed ID: 24022173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SOFT-MI: a novel microfabrication technique integrating soft-lithography and molecular imprinting for tissue engineering applications.
    Vozzi G; Morelli I; Vozzi F; Andreoni C; Salsedo E; Morachioli A; Giusti P; Ciardelli G
    Biotechnol Bioeng; 2010 Aug; 106(5):804-17. PubMed ID: 20564617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.