BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25331611)

  • 1. Fluorescence lifetime imaging ophthalmoscopy in glaucoma.
    Ramm L; Jentsch S; Augsten R; Hammer M
    Graefes Arch Clin Exp Ophthalmol; 2014 Dec; 252(12):2025-6. PubMed ID: 25331611
    [No Abstract]   [Full Text] [Related]  

  • 2. Optical coherence tomography angiography in pre-perimetric open-angle glaucoma.
    Cennamo G; Montorio D; Velotti N; Sparnelli F; Reibaldi M; Cennamo G
    Graefes Arch Clin Exp Ophthalmol; 2017 Sep; 255(9):1787-1793. PubMed ID: 28631244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The ophthalmoscopic characteristics of the optic disk and the retinal layer of nerve fibers of the retina in glaucoma].
    Kurysheva NI
    Vestn Oftalmol; 2005; 121(4):46-9. PubMed ID: 16223048
    [No Abstract]   [Full Text] [Related]  

  • 4. Linear relation between structure and function.
    Wegner A; Erben A
    Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6891; author reply 6891-2. PubMed ID: 21123774
    [No Abstract]   [Full Text] [Related]  

  • 5. Structural changes of macular inner retinal layers in early normal-tension and high-tension glaucoma by spectral-domain optical coherence tomography.
    Edlinger FSM; Schrems-Hoesl LM; Mardin CY; Laemmer R; Kruse FE; Schrems WA
    Graefes Arch Clin Exp Ophthalmol; 2018 Jul; 256(7):1245-1256. PubMed ID: 29523993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations in optic nerve head morphology by intraocular pressure in open-angle glaucoma.
    Wong A; Matheos K; Prime Z; Danesh-Meyer HV
    Graefes Arch Clin Exp Ophthalmol; 2017 Nov; 255(11):2219-2226. PubMed ID: 28875349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Peripapillary OCT Angiography Vessel Density and Retinal Nerve Fiber Layer Thickness Measurements for Their Ability to Detect Progression in Glaucoma.
    Holló G
    J Glaucoma; 2018 Mar; 27(3):302-305. PubMed ID: 29303879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Analysis of Microvasculature in Macular and Peripapillary Regions in Early Primary Open-Angle Glaucoma.
    Lu P; Xiao H; Liang C; Xu Y; Ye D; Huang J
    Curr Eye Res; 2020 May; 45(5):629-635. PubMed ID: 31587582
    [No Abstract]   [Full Text] [Related]  

  • 9. Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma.
    Rao HL; Pradhan ZS; Weinreb RN; Reddy HB; Riyazuddin M; Dasari S; Palakurthy M; Puttaiah NK; Rao DA; Webers CA
    Am J Ophthalmol; 2016 Nov; 171():75-83. PubMed ID: 27590118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ganglion Cell Complex Thickness and Macular Vessel Density Loss in Primary Open-Angle Glaucoma.
    Hou H; Moghimi S; Proudfoot JA; Ghahari E; Penteado RC; Bowd C; Yang D; Weinreb RN
    Ophthalmology; 2020 Aug; 127(8):1043-1052. PubMed ID: 32085875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glaucoma Suspect, and Healthy Eyes.
    Hou H; Moghimi S; Zangwill LM; Shoji T; Ghahari E; Manalastas PIC; Penteado RC; Weinreb RN
    Am J Ophthalmol; 2018 Jun; 190():69-77. PubMed ID: 29580976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of peripapillary retinal nerve fiber layer volume in glaucoma.
    King AJ; Bolton N; Aspinall P; O'Brien CJ
    Am J Ophthalmol; 2000 May; 129(5):599-607. PubMed ID: 10844050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of structural retinal nerve fibre layer parameters and functional measures using Heidelberg Retinal Tomography and Spectralis spectral domain optical coherence tomography at different levels of glaucoma severity.
    Leaney J; Healey PR; Lee M; Graham SL
    Clin Exp Ophthalmol; 2012 Nov; 40(8):802-12. PubMed ID: 22594488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocular microcirculation measurement with laser speckle flowgraphy and optical coherence tomography angiography in glaucoma.
    Kiyota N; Kunikata H; Shiga Y; Omodaka K; Nakazawa T
    Acta Ophthalmol; 2018 Jun; 96(4):e485-e492. PubMed ID: 29575676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Coherence Tomography Angiography Compared With Optical Coherence Tomography Macular Measurements for Detection of Glaucoma.
    Wan KH; Lam AKN; Leung CK
    JAMA Ophthalmol; 2018 Aug; 136(8):866-874. PubMed ID: 29852029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optic disc characteristics in patients with glaucoma and combined superior and inferior retinal nerve fiber layer defects.
    Choi JA; Park HY; Shin HY; Park CK
    JAMA Ophthalmol; 2014 Sep; 132(9):1068-75. PubMed ID: 24921983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progressive retinal nerve fibre layer thinning and choroidal microvasculature dropout at the location of disc haemorrhage in glaucoma.
    Kim CY; Lee EJ; Kim JA; Kim H; Kim TW
    Br J Ophthalmol; 2021 May; 105(5):674-680. PubMed ID: 32611606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Laser Scanning Diagnostic Devices for Early Glaucoma Detection.
    Schulze A; Lamparter J; Pfeiffer N; Berisha F; Schmidtmann I; Hoffmann EM
    J Glaucoma; 2015 Aug; 24(6):442-7. PubMed ID: 24844535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Border Tissue Morphology Is Spatially Associated with Focal Lamina Cribrosa Defect and Deep-Layer Microvasculature Dropout in Open-Angle Glaucoma.
    Han JC; Choi JH; Park DY; Lee EJ; Kee C
    Am J Ophthalmol; 2019 Jul; 203():89-102. PubMed ID: 30825418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension.
    North RV; Jones AL; Drasdo N; Wild JM; Morgan JE
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1216-22. PubMed ID: 19850843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.