BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25332008)

  • 41. Varenicline enhances oxidized LDL uptake by increasing expression of LOX-1 and CD36 scavenger receptors through α
    Kanaoka Y; Koga M; Sugiyama K; Ohishi K; Kataoka Y; Yamauchi A
    Toxicology; 2017 Apr; 380():62-71. PubMed ID: 28202387
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Specific Kv1.3 blockade modulates key cholesterol-metabolism-associated molecules in human macrophages exposed to ox-LDL.
    Yang Y; Wang YF; Yang XF; Wang ZH; Lian YT; Yang Y; Li XW; Gao X; Chen J; Shu YW; Cheng LX; Liao YH; Liu K
    J Lipid Res; 2013 Jan; 54(1):34-43. PubMed ID: 23099443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Effects of oxidized low-density lipoprotein on cholesterol efflux in 3T3-L1 cells].
    Yu BL; Zhao SP; Xie XZ; Dong SZ; Dong J
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2007 Aug; 32(4):631-6. PubMed ID: 17767055
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of the NLRP3 inflammasome attenuates foam cell formation of THP-1 macrophages by suppressing ox-LDL uptake and promoting cholesterol efflux.
    Chen L; Yao Q; Xu S; Wang H; Qu P
    Biochem Biophys Res Commun; 2018 Jan; 495(1):382-387. PubMed ID: 29122594
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kaempferol suppresses lipid accumulation in macrophages through the downregulation of cluster of differentiation 36 and the upregulation of scavenger receptor class B type I and ATP-binding cassette transporters A1 and G1.
    Li XY; Kong LX; Li J; He HX; Zhou YD
    Int J Mol Med; 2013 Feb; 31(2):331-8. PubMed ID: 23232972
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Effect of estradiol on cholesterol metabolism in J774a.1 mouse mononuclear/macrophage cells].
    Wang X; Liu J; Duan WL; Shang J
    Yao Xue Xue Bao; 2014 Jul; 49(7):1013-8. PubMed ID: 25233632
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Class A scavenger receptor up-regulation in smooth muscle cells by oxidized low density lipoprotein. Enhancement by calcium flux and concurrent cyclooxygenase-2 up-regulation.
    Mietus-Snyder M; Gowri MS; Pitas RE
    J Biol Chem; 2000 Jun; 275(23):17661-70. PubMed ID: 10837497
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells.
    Zhang GQ; Tao YK; Bai YP; Yan ST; Zhao SP
    Chin Med J (Engl); 2018 Apr; 131(8):950-955. PubMed ID: 29664056
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PPARgamma phosphorylation mediated by JNK MAPK: a potential role in macrophage-derived foam cell formation.
    Yin R; Dong YG; Li HL
    Acta Pharmacol Sin; 2006 Sep; 27(9):1146-52. PubMed ID: 16923334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RNA helicase DDX5 participates in oxLDL-induced macrophage scavenger receptor 1 expression by suppressing mRNA degradation.
    Zhao W; Wang Z; Sun Z; He Y; Jian D; Hu X; Zhang W; Zheng L
    Exp Cell Res; 2018 May; 366(2):114-120. PubMed ID: 29522752
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High density lipoprotein 3 inhibits oxidized low density lipoprotein-induced apoptosis via promoting cholesterol efflux in RAW264.7 cells.
    Jiang P; Yan PK; Chen JX; Zhu BY; Lei XY; Yin WD; Liao DF
    Acta Pharmacol Sin; 2006 Feb; 27(2):151-7. PubMed ID: 16412263
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Impact of H₂S on oxidized-low density lipoprotein-stimulated nuclear factor-κB in human monocytes/macrophage and its mechanisms].
    Zhao MM; Zhang QL; Yan H; DU JB; Geng B; Tang CS; Jin HF
    Beijing Da Xue Xue Bao Yi Xue Ban; 2013 Apr; 45(2):192-6. PubMed ID: 23591335
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Effect of microRNA-155 on inflammatory response and lipid uptake of macrophages and its mechanism].
    Zhang X; Ye J; Liang X; Yang L
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2017 Aug; 33(8):1079-1086. PubMed ID: 28871950
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potential pathological roles for oxidized low-density lipoprotein and scavenger receptors SR-AI, CD36, and LOX-1 in aortic valve stenosis.
    Syväranta S; Alanne-Kinnunen M; Oörni K; Oksjoki R; Kupari M; Kovanen PT; Helske-Suihko S
    Atherosclerosis; 2014 Aug; 235(2):398-407. PubMed ID: 24929820
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ethanol extract of propolis protects endothelial cells from oxidized low density lipoprotein-induced injury by inhibiting lectin-like oxidized low density lipoprotein receptor-1-mediated oxidative stress.
    Fang Y; Li J; Ding M; Xu X; Zhang J; Jiao P; Han P; Wang J; Yao S
    Exp Biol Med (Maywood); 2014 Dec; 239(12):1678-87. PubMed ID: 24962173
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tacrolimus protects vascular endothelial cells from injuries caused by Ox-LDL by regulating endoplasmic reticulum stress.
    Qi JC; Liu PG; Wang C; Zheng AD; Wan Z
    Eur Rev Med Pharmacol Sci; 2017 Oct; 21(17):3966-3973. PubMed ID: 28975964
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acrolein-conjugated low-density lipoprotein induces macrophage foam cell formation.
    Watanabe K; Nakazato Y; Saiki R; Igarashi K; Kitada M; Ishii I
    Atherosclerosis; 2013 Mar; 227(1):51-7. PubMed ID: 23305793
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cytotoxic effect of oxidized low density lipoprotein on macrophages.
    Hakamata H; Miyazaki A; Sakai M; Sakamoto YI; Horiuchi S
    J Atheroscler Thromb; 1998; 5(2):66-75. PubMed ID: 10855560
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitochondrion-Targeted Peptide SS-31 Inhibited Oxidized Low-Density Lipoproteins-Induced Foam Cell Formation through both ROS Scavenging and Inhibition of Cholesterol Influx in RAW264.7 Cells.
    Hao S; Ji J; Zhao H; Shang L; Wu J; Li H; Qiao T; Li K
    Molecules; 2015 Dec; 20(12):21287-97. PubMed ID: 26633327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of MSR-1 and CD36 in macrophages by LOX-1 mediated through PPAR-γ.
    Dai Y; Su W; Ding Z; Wang X; Mercanti F; Chen M; Raina S; Mehta JL
    Biochem Biophys Res Commun; 2013 Feb; 431(3):496-500. PubMed ID: 23333385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.