BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 25332098)

  • 1. The gene regulatory networks underlying formation of the auditory hindbrain.
    Willaredt MA; Schlüter T; Nothwang HG
    Cell Mol Life Sci; 2015 Feb; 72(3):519-535. PubMed ID: 25332098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Analysis of Gene Regulatory Network Components in the Auditory Hindbrain of Mice and Chicken.
    Pawlik B; Schlüter T; Hartwich H; Breuel S; Heepmann L; Nothwang HG
    Brain Behav Evol; 2016; 88(3-4):161-176. PubMed ID: 27866201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved and divergent development of brainstem vestibular and auditory nuclei.
    Lipovsek M; Wingate RJ
    Elife; 2018 Dec; 7():. PubMed ID: 30566077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-dependent formation of a vesicular inhibitory amino acid transporter gradient in the superior olivary complex of NMRI mice.
    Ebbers L; Weber M; Nothwang HG
    BMC Neurosci; 2017 Oct; 18(1):75. PubMed ID: 29073893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression pattern of cochlear microRNAs in the mammalian auditory hindbrain.
    Krohs C; Bordeynik-Cohen M; Messika-Gold N; Elkon R; Avraham KB; Nothwang HG
    Cell Tissue Res; 2021 Feb; 383(2):655-666. PubMed ID: 33156384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time course of embryonic midbrain and thalamic auditory connection development in mice as revealed by carbocyanine dye tracing.
    Gurung B; Fritzsch B
    J Comp Neurol; 2004 Nov; 479(3):309-27. PubMed ID: 15457503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroproteomics in the auditory brainstem: candidate proteins for ultrafast and precise information processing.
    Moritz CP; Eckstein E; Tenzer S; Friauf E
    Mol Cell Neurosci; 2015 Jan; 64():9-23. PubMed ID: 25131618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perineuronal nets in the auditory system.
    Sonntag M; Blosa M; Schmidt S; Rübsamen R; Morawski M
    Hear Res; 2015 Nov; 329():21-32. PubMed ID: 25580005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of calretinin immunoreactivity in the brainstem auditory nuclei of the barn owl (Tyto alba).
    Kubke MF; Gauger B; Basu L; Wagner H; Carr CE
    J Comp Neurol; 1999 Dec; 415(2):189-203. PubMed ID: 10545159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative expression analysis of the Atoh7 gene regulatory network in the mouse and chicken auditory hindbrain.
    Saleh AJ; Ahmed Y; Peters LO; Nothwang HG
    Cell Tissue Res; 2023 Jun; 392(3):643-658. PubMed ID: 36961563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses.
    Rubio ME; Nagy JI
    Neuroscience; 2015 Sep; 303():604-29. PubMed ID: 26188286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxytocin within auditory nuclei: a neuromodulatory function in sensory processing?
    Kanwal JS; Rao PD
    Neuroreport; 2002 Dec; 13(17):2193-7. PubMed ID: 12488795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats.
    Lohmann C; Friauf E
    J Comp Neurol; 1996 Mar; 367(1):90-109. PubMed ID: 8867285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain.
    Macova I; Pysanenko K; Chumak T; Dvorakova M; Bohuslavova R; Syka J; Fritzsch B; Pavlinkova G
    J Neurosci; 2019 Feb; 39(6):984-1004. PubMed ID: 30541910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of hearing and balance.
    Weghorst FP; Cramer KS
    Elife; 2019 Feb; 8():. PubMed ID: 30735124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient CD15 expression reflects stages of differentiation and maturation in the human subcortical central auditory pathway.
    Mai JK; Winking R; Ashwell KW
    J Comp Neurol; 1999 Feb; 404(2):197-211. PubMed ID: 9934994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem.
    Wallace MM; Harris JA; Brubaker DQ; Klotz CA; Gabriele ML
    Hear Res; 2016 May; 335():64-75. PubMed ID: 26906676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory Input Shapes Tonotopic Differentiation of Kv1.1 Expression in Avian Cochlear Nucleus during Late Development.
    Akter N; Adachi R; Kato A; Fukaya R; Kuba H
    J Neurosci; 2018 Mar; 38(12):2967-2980. PubMed ID: 29439165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The association between subcortical and cortical fMRI and lifetime noise exposure in listeners with normal hearing thresholds.
    Dewey RS; Francis ST; Guest H; Prendergast G; Millman RE; Plack CJ; Hall DA
    Neuroimage; 2020 Jan; 204():116239. PubMed ID: 31586673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.
    Lerud KD; Almonte FV; Kim JC; Large EW
    Hear Res; 2014 Feb; 308():41-9. PubMed ID: 24091182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.