These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 25332098)

  • 21. Localization of rat glycine receptor alpha1 and alpha2 subunit transcripts in the developing auditory brainstem.
    Piechotta K; Weth F; Harvey RJ; Friauf E
    J Comp Neurol; 2001 Sep; 438(3):336-52. PubMed ID: 11550176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.
    Hinman VF; Cheatle Jarvela AM
    Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Somatostatin and leu-enkephalin in the rat auditory brainstem during fetal and postnatal development.
    Kungel M; Friauf E
    Anat Embryol (Berl); 1995 May; 191(5):425-43. PubMed ID: 7625613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat.
    Kulesza RJ; Viñuela A; Saldaña E; Berrebi AS
    Hear Res; 2002 Jun; 168(1-2):12-24. PubMed ID: 12117505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in calcium-binding protein expression in the auditory brainstem nuclei of the jaundiced Gunn rat.
    Spencer RF; Shaia WT; Gleason AT; Sismanis A; Shapiro SM
    Hear Res; 2002 Sep; 171(1-2):129-141. PubMed ID: 12204357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurotransmitter and neuromodulator systems of the rat inferior colliculus and auditory brainstem studied by in situ hybridization.
    Wynne B; Harvey AR; Robertson D; Sirinathsinghji DJ
    J Chem Neuroanat; 1995 Dec; 9(4):289-300. PubMed ID: 8719277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developmental expression of the glycine transporter GLYT2 in the auditory system of rats suggests involvement in synapse maturation.
    Friauf E; Aragón C; Löhrke S; Westenfelder B; Zafra F
    J Comp Neurol; 1999 Sep; 412(1):17-37. PubMed ID: 10440707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The medial olivocochlear reflex strength is modulated during a visual working memory task.
    Marcenaro B; Leiva A; Dragicevic C; López V; Delano PH
    J Neurophysiol; 2021 Jun; 125(6):2309-2321. PubMed ID: 33978484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene, cell, and organ multiplication drives inner ear evolution.
    Fritzsch B; Elliott KL
    Dev Biol; 2017 Nov; 431(1):3-15. PubMed ID: 28866362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Structure and Sensitivity of the Fish Inner Ear.
    Vasconcelos RO; Alderks PW; Sisneros JA
    Adv Exp Med Biol; 2016; 877():291-318. PubMed ID: 26515320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of the Kv1.1 ion channel subunit in the auditory brainstem of the big brown bat, Eptesicus fuscus.
    Rosenberger MH; Fremouw T; Casseday JH; Covey E
    J Comp Neurol; 2003 Jul; 462(1):101-20. PubMed ID: 12761827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hearing of modulation in sounds.
    Kay RH
    Physiol Rev; 1982 Jul; 62(3):894-975. PubMed ID: 7045902
    [No Abstract]   [Full Text] [Related]  

  • 33. The emerging framework of mammalian auditory hindbrain development.
    Nothwang HG; Ebbers L; Schlüter T; Willaredt MA
    Cell Tissue Res; 2015 Jul; 361(1):33-48. PubMed ID: 25636588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spiral Ganglion Neuron Projection Development to the Hindbrain in Mice Lacking Peripheral and/or Central Target Differentiation.
    Elliott KL; Kersigo J; Pan N; Jahan I; Fritzsch B
    Front Neural Circuits; 2017; 11():25. PubMed ID: 28450830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the central auditory system in hearing: the new direction.
    Masterton RB
    Trends Neurosci; 1992 Aug; 15(8):280-5. PubMed ID: 1384196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased contralateral suppression of otoacoustic emissions indicates a hyperresponsive medial olivocochlear system in humans with tinnitus and hyperacusis.
    Knudson IM; Shera CA; Melcher JR
    J Neurophysiol; 2014 Dec; 112(12):3197-208. PubMed ID: 25231612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The vertebrate Hox gene regulatory network for hindbrain segmentation: Evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates.
    Parker HJ; Bronner ME; Krumlauf R
    Bioessays; 2016 Jun; 38(6):526-38. PubMed ID: 27027928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Across Species "Natural Ablation" Reveals the Brainstem Source of a Noninvasive Biomarker of Binaural Hearing.
    Benichoux V; Ferber A; Hunt S; Hughes E; Tollin D
    J Neurosci; 2018 Oct; 38(40):8563-8573. PubMed ID: 30126974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altered Auditory Processing, Filtering, and Reactivity in the
    Scott KE; Schormans AL; Pacoli KY; De Oliveira C; Allman BL; Schmid S
    J Neurosci; 2018 Oct; 38(40):8588-8604. PubMed ID: 30126973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative morphometry of mammalian central auditory systems: variation in nuclei and form of the ascending system.
    Glendenning KK; Masterton RB
    Brain Behav Evol; 1998; 51(2):59-89. PubMed ID: 9491274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.