These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 25332686)
1. The steroid receptor coactivator-3 is required for developing neuroendocrine tumor in the mouse prostate. Tien JC; Liao L; Liu Y; Liu Z; Lee DK; Wang F; Xu J Int J Biol Sci; 2014; 10(10):1116-27. PubMed ID: 25332686 [TBL] [Abstract][Full Text] [Related]
2. Genetic ablation of the amplified-in-breast cancer 1 inhibits spontaneous prostate cancer progression in mice. Chung AC; Zhou S; Liao L; Tien JC; Greenberg NM; Xu J Cancer Res; 2007 Jun; 67(12):5965-75. PubMed ID: 17575167 [TBL] [Abstract][Full Text] [Related]
3. Origin of androgen-insensitive poorly differentiated tumors in the transgenic adenocarcinoma of mouse prostate model. Huss WJ; Gray DR; Tavakoli K; Marmillion ME; Durham LE; Johnson MA; Greenberg NM; Smith GJ Neoplasia; 2007 Nov; 9(11):938-50. PubMed ID: 18030362 [TBL] [Abstract][Full Text] [Related]
4. The role of SRC-1 in murine prostate cancinogenesis is nonessential due to a possible compensation of SRC-3/AIB1 overexpression. Tien JC; Zhou S; Xu J Int J Biol Sci; 2009; 5(3):256-64. PubMed ID: 19305643 [TBL] [Abstract][Full Text] [Related]
5. The steroid receptor coactivator-3 is required for the development of castration-resistant prostate cancer. Tien JC; Liu Z; Liao L; Wang F; Xu Y; Wu YL; Zhou N; Ittmann M; Xu J Cancer Res; 2013 Jul; 73(13):3997-4008. PubMed ID: 23650284 [TBL] [Abstract][Full Text] [Related]
6. HOXC8 inhibits androgen receptor signaling in human prostate cancer cells by inhibiting SRC-3 recruitment to direct androgen target genes. Axlund SD; Lambert JR; Nordeen SK Mol Cancer Res; 2010 Dec; 8(12):1643-55. PubMed ID: 21047772 [TBL] [Abstract][Full Text] [Related]
7. An investigation of the effects of late-onset dietary restriction on prostate cancer development in the TRAMP mouse. Suttie AW; Dinse GE; Nyska A; Moser GJ; Goldsworthy TL; Maronpot RR Toxicol Pathol; 2005; 33(3):386-97. PubMed ID: 15805078 [TBL] [Abstract][Full Text] [Related]
8. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Chiaverotti T; Couto SS; Donjacour A; Mao JH; Nagase H; Cardiff RD; Cunha GR; Balmain A Am J Pathol; 2008 Jan; 172(1):236-46. PubMed ID: 18156212 [TBL] [Abstract][Full Text] [Related]
9. Differential requirement for Src family tyrosine kinases in the initiation, progression, and metastasis of prostate cancer. Gelman IH; Peresie J; Eng KH; Foster BA Mol Cancer Res; 2014 Oct; 12(10):1470-9. PubMed ID: 25053806 [TBL] [Abstract][Full Text] [Related]
10. SRRM4 Expression and the Loss of REST Activity May Promote the Emergence of the Neuroendocrine Phenotype in Castration-Resistant Prostate Cancer. Zhang X; Coleman IM; Brown LG; True LD; Kollath L; Lucas JM; Lam HM; Dumpit R; Corey E; Chéry L; Lakely B; Higano CS; Montgomery B; Roudier M; Lange PH; Nelson PS; Vessella RL; Morrissey C Clin Cancer Res; 2015 Oct; 21(20):4698-708. PubMed ID: 26071481 [TBL] [Abstract][Full Text] [Related]
12. Mash1 expression is induced in neuroendocrine prostate cancer upon the loss of Foxa2. Gupta A; Yu X; Case T; Paul M; Shen MM; Kaestner KH; Matusik RJ Prostate; 2013 May; 73(6):582-9. PubMed ID: 23060003 [TBL] [Abstract][Full Text] [Related]
13. Synaptophysin expression on circulating tumor cells in patients with castration resistant prostate cancer undergoing treatment with abiraterone acetate or enzalutamide. Pal SK; He M; Chen L; Yang L; Pillai R; Twardowski P; Hsu J; Kortylewski M; Jones JO Urol Oncol; 2018 Apr; 36(4):162.e1-162.e6. PubMed ID: 29289429 [TBL] [Abstract][Full Text] [Related]
14. Loss of MyD88 leads to more aggressive TRAMP prostate cancer and influences tumor infiltrating lymphocytes. Peek EM; Song W; Zhang H; Huang J; Chin AI Prostate; 2015 Apr; 75(5):463-73. PubMed ID: 25597486 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional Repression of SIRT3 Potentiates Mitochondrial Aconitase Activation to Drive Aggressive Prostate Cancer to the Bone. Sawant Dessai A; Dominguez MP; Chen UI; Hasper J; Prechtl C; Yu C; Katsuta E; Dai T; Zhu B; Jung SY; Putluri N; Takabe K; Zhang XH; O'Malley BW; Dasgupta S Cancer Res; 2021 Jan; 81(1):50-63. PubMed ID: 33115805 [TBL] [Abstract][Full Text] [Related]
16. Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Niu Y; Altuwaijri S; Yeh S; Lai KP; Yu S; Chuang KH; Huang SP; Lardy H; Chang C Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12188-93. PubMed ID: 18723670 [TBL] [Abstract][Full Text] [Related]
17. Lobe-specific lineages of carcinogenesis in the transgenic adenocarcinoma of mouse prostate and their responses to chemopreventive selenium. Wang L; Zhang J; Zhang Y; Nkhata K; Quealy E; Liao JD; Cleary MP; Lü J Prostate; 2011 Sep; 71(13):1429-40. PubMed ID: 21360561 [TBL] [Abstract][Full Text] [Related]
18. Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers. Mauri G; Jachetti E; Comuzzi B; Dugo M; Arioli I; Miotti S; Sangaletti S; Di Carlo E; Tripodo C; Colombo MP Oncotarget; 2016 Jan; 7(4):3905-20. PubMed ID: 26700622 [TBL] [Abstract][Full Text] [Related]
20. Conditional expression of the androgen receptor induces oncogenic transformation of the mouse prostate. Zhu C; Luong R; Zhuo M; Johnson DT; McKenney JK; Cunha GR; Sun Z J Biol Chem; 2011 Sep; 286(38):33478-88. PubMed ID: 21795710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]