These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Dysfunctional transforming growth factor-beta receptor II accelerates prostate tumorigenesis in the TRAMP mouse model. Pu H; Collazo J; Jones E; Gayheart D; Sakamoto S; Vogt A; Mitchell B; Kyprianou N Cancer Res; 2009 Sep; 69(18):7366-74. PubMed ID: 19738062 [TBL] [Abstract][Full Text] [Related]
23. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Sun F; Zhang ZW; Tan EM; Lim ZLR; Li Y; Wang XC; Chua SE; Li J; Cheung E; Yong EL Carcinogenesis; 2016 Jul; 37(7):701-711. PubMed ID: 27207661 [TBL] [Abstract][Full Text] [Related]
24. Co-expression of TTF-1 and neuroendocrine markers in the human fetal lung and pulmonary neuroendocrine tumors. Miskovic J; Brekalo Z; Vukojevic K; Miskovic HR; Kraljevic D; Todorovic J; Soljic V Acta Histochem; 2015; 117(4-5):451-9. PubMed ID: 25722034 [TBL] [Abstract][Full Text] [Related]
25. Extra-prostatic transgene-associated neoplastic lesions in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Berman-Booty LD; Thomas-Ahner JM; Bolon B; Oglesbee MJ; Clinton SK; Kulp SK; Chen CS; La Perle KM Toxicol Pathol; 2015 Feb; 43(2):186-97. PubMed ID: 24742627 [TBL] [Abstract][Full Text] [Related]
26. SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Gururajan M; Cavassani KA; Sievert M; Duan P; Lichterman J; Huang JM; Smith B; You S; Nandana S; Chu GC; Mink S; Josson S; Liu C; Morello M; Jones LW; Kim J; Freeman MR; Bhowmick N; Zhau HE; Chung LW; Posadas EM Oncotarget; 2015 Dec; 6(42):44072-83. PubMed ID: 26624980 [TBL] [Abstract][Full Text] [Related]
27. Expression and function of androgen receptor coactivators in prostate cancer. Culig Z; Comuzzi B; Steiner H; Bartsch G; Hobisch A J Steroid Biochem Mol Biol; 2004 Nov; 92(4):265-71. PubMed ID: 15663989 [TBL] [Abstract][Full Text] [Related]
28. The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor. Kasina S; Macoska JA Mol Cell Endocrinol; 2012 Apr; 351(2):249-63. PubMed ID: 22245379 [TBL] [Abstract][Full Text] [Related]
29. Increased nuclear factor I/B expression in prostate cancer correlates with AR expression. Nanda JS; Awadallah WN; Kohrt SE; Popovics P; Cates JMM; Mirosevich J; Clark PE; Giannico GA; Grabowska MM Prostate; 2020 Sep; 80(13):1058-1070. PubMed ID: 32692871 [TBL] [Abstract][Full Text] [Related]
30. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Unni E; Sun S; Nan B; McPhaul MJ; Cheskis B; Mancini MA; Marcelli M Cancer Res; 2004 Oct; 64(19):7156-68. PubMed ID: 15466214 [TBL] [Abstract][Full Text] [Related]
31. Foxa2 activates the transcription of androgen receptor target genes in castrate resistant prostatic tumors. Connelly ZM; Yang S; Chen F; Yeh Y; Khater N; Jin R; Matusik R; Yu X Am J Clin Exp Urol; 2018; 6(5):172-181. PubMed ID: 30510969 [TBL] [Abstract][Full Text] [Related]
32. Germline genetic variation modulates tumor progression and metastasis in a mouse model of neuroendocrine prostate carcinoma. Patel SJ; Molinolo AA; Gutkind S; Crawford NP PLoS One; 2013; 8(4):e61848. PubMed ID: 23620793 [TBL] [Abstract][Full Text] [Related]
33. Malignancy arising in seminal vesicles in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Yeh IT; Reddick RL; Kumar AP Prostate; 2009 May; 69(7):755-60. PubMed ID: 19170049 [TBL] [Abstract][Full Text] [Related]
34. Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/β-catenin signaling in prostate cancer cells. Ciarlo M; Benelli R; Barbieri O; Minghelli S; Barboro P; Balbi C; Ferrari N Int J Cancer; 2012 Aug; 131(3):582-90. PubMed ID: 22015967 [TBL] [Abstract][Full Text] [Related]
35. SRC-3 has a role in cancer other than as a nuclear receptor coactivator. Ma G; Ren Y; Wang K; He J Int J Biol Sci; 2011; 7(5):664-72. PubMed ID: 21647249 [TBL] [Abstract][Full Text] [Related]
36. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Yasumizu Y; Rajabi H; Jin C; Hata T; Pitroda S; Long MD; Hagiwara M; Li W; Hu Q; Liu S; Yamashita N; Fushimi A; Kui L; Samur M; Yamamoto M; Zhang Y; Zhang N; Hong D; Maeda T; Kosaka T; Wong KK; Oya M; Kufe D Nat Commun; 2020 Jan; 11(1):338. PubMed ID: 31953400 [TBL] [Abstract][Full Text] [Related]
37. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Geng C; He B; Xu L; Barbieri CE; Eedunuri VK; Chew SA; Zimmermann M; Bond R; Shou J; Li C; Blattner M; Lonard DM; Demichelis F; Coarfa C; Rubin MA; Zhou P; O'Malley BW; Mitsiades N Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6997-7002. PubMed ID: 23559371 [TBL] [Abstract][Full Text] [Related]
38. Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Yan J; Yu CT; Ozen M; Ittmann M; Tsai SY; Tsai MJ Cancer Res; 2006 Nov; 66(22):11039-46. PubMed ID: 17108143 [TBL] [Abstract][Full Text] [Related]
39. Hormone status selects for spontaneous somatic androgen receptor variants that demonstrate specific ligand and cofactor dependent activities in autochthonous prostate cancer. Han G; Foster BA; Mistry S; Buchanan G; Harris JM; Tilley WD; Greenberg NM J Biol Chem; 2001 Apr; 276(14):11204-13. PubMed ID: 11063747 [TBL] [Abstract][Full Text] [Related]
40. Breast cancer resistance protein-mediated efflux of androgen in putative benign and malignant prostate stem cells. Huss WJ; Gray DR; Greenberg NM; Mohler JL; Smith GJ Cancer Res; 2005 Aug; 65(15):6640-50. PubMed ID: 16061644 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]