These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 25332686)
41. Dysregulation of miR-212 Promotes Castration Resistance through hnRNPH1-Mediated Regulation of AR and AR-V7: Implications for Racial Disparity of Prostate Cancer. Yang Y; Jia D; Kim H; Abd Elmageed ZY; Datta A; Davis R; Srivastav S; Moroz K; Crawford BE; Moparty K; Thomas R; Hudson RS; Ambs S; Abdel-Mageed AB Clin Cancer Res; 2016 Apr; 22(7):1744-56. PubMed ID: 26553749 [TBL] [Abstract][Full Text] [Related]
42. Genistein alters growth factor signaling in transgenic prostate model (TRAMP). Wang J; Eltoum IE; Lamartiniere CA Mol Cell Endocrinol; 2004 Apr; 219(1-2):171-80. PubMed ID: 15149738 [TBL] [Abstract][Full Text] [Related]
43. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice. Ye X; Han SJ; Tsai SY; DeMayo FJ; Xu J; Tsai MJ; O'Malley BW Proc Natl Acad Sci U S A; 2005 Jul; 102(27):9487-92. PubMed ID: 15983373 [TBL] [Abstract][Full Text] [Related]
44. Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells. Gao J; Arnold JT; Isaacs JT Cancer Res; 2001 Jul; 61(13):5038-44. PubMed ID: 11431338 [TBL] [Abstract][Full Text] [Related]
45. Characterization of the autochthonous transgenic adenocarcinoma of the mouse prostate (TRAMP) as a model to study effects of castration therapy. Wikström P; Lindahl C; Bergh A Prostate; 2005 Feb; 62(2):148-64. PubMed ID: 15389804 [TBL] [Abstract][Full Text] [Related]
46. Expression of estrogen receptors, androgen receptor and steroid receptor coactivator-3 is negatively correlated to the differentiation of astrocytic tumors. Liu C; Zhang Y; Zhang K; Bian C; Zhao Y; Zhang J Cancer Epidemiol; 2014 Jun; 38(3):291-7. PubMed ID: 24680642 [TBL] [Abstract][Full Text] [Related]
47. The aryl hydrocarbon receptor inhibits prostate carcinogenesis in TRAMP mice. Fritz WA; Lin TM; Cardiff RD; Peterson RE Carcinogenesis; 2007 Feb; 28(2):497-505. PubMed ID: 17052998 [TBL] [Abstract][Full Text] [Related]
48. Loss of epithelial AR increase castration resistant stem-like prostate cancer cells and promotes cancer metastasis via TGF-β1/EMT pathway. Cai Q; Chen Y; Zhang D; Pan J; Xie Z; Ma S; Liu C; Zuo J; Zhou X; Quan C; Xin Z; Niu Y Transl Androl Urol; 2020 Jun; 9(3):1013-1027. PubMed ID: 32676386 [TBL] [Abstract][Full Text] [Related]
49. Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. Ueda T; Mawji NR; Bruchovsky N; Sadar MD J Biol Chem; 2002 Oct; 277(41):38087-94. PubMed ID: 12163482 [TBL] [Abstract][Full Text] [Related]
50. The relationship of neuroendocrine carcinomas to anti-tumor therapies in TRAMP mice. Tang Y; Wang L; Goloubeva O; Khan MA; Lee D; Hussain A Prostate; 2009 Dec; 69(16):1763-73. PubMed ID: 19691128 [TBL] [Abstract][Full Text] [Related]
51. Targeted disruption of the p160 coactivator interface of androgen receptor (AR) selectively inhibits AR activity in both androgen-dependent and castration-resistant AR-expressing prostate cancer cells. Nakka M; Agoulnik IU; Weigel NL Int J Biochem Cell Biol; 2013 Apr; 45(4):763-72. PubMed ID: 23270728 [TBL] [Abstract][Full Text] [Related]
52. Ligand-dependent corepressor acts as a novel androgen receptor corepressor, inhibits prostate cancer growth, and is functionally inactivated by the Src protein kinase. Asim M; Hafeez BB; Siddiqui IA; Gerlach C; Patz M; Mukhtar H; Baniahmad A J Biol Chem; 2011 Oct; 286(43):37108-17. PubMed ID: 21856747 [TBL] [Abstract][Full Text] [Related]
53. SOX2 expression in the developing, adult, as well as, diseased prostate. Yu X; Cates JM; Morrissey C; You C; Grabowska MM; Zhang J; DeGraff DJ; Strand DW; Franco OE; Lin-Tsai O; Hayward SW; Matusik RJ Prostate Cancer Prostatic Dis; 2014 Dec; 17(4):301-9. PubMed ID: 25091041 [TBL] [Abstract][Full Text] [Related]
54. P21 and P27 promote tumorigenesis and progression via cell cycle acceleration in seminal vesicles of TRAMP mice. Li T; Wang F; Dang Y; Dong J; Zhang Y; Zhang C; Liu P; Gao Y; Wang X; Yang S; Lu S Int J Biol Sci; 2019; 15(10):2198-2210. PubMed ID: 31592235 [TBL] [Abstract][Full Text] [Related]
55. Non-invasive bioluminescent detection of prostate cancer growth and metastasis in a bigenic transgenic mouse model. Hsieh CL; Xie Z; Yu J; Martin WD; Datta MW; Wu GJ; Chung LW Prostate; 2007 May; 67(7):685-91. PubMed ID: 17342752 [TBL] [Abstract][Full Text] [Related]
56. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Foster BA; Gingrich JR; Kwon ED; Madias C; Greenberg NM Cancer Res; 1997 Aug; 57(16):3325-30. PubMed ID: 9269988 [TBL] [Abstract][Full Text] [Related]
57. Broadening of transgenic adenocarcinoma of the mouse prostate (TRAMP) model to represent late stage androgen depletion independent cancer. Jeet V; Ow K; Doherty E; Curley B; Russell PJ; Khatri A Prostate; 2008 Apr; 68(5):548-62. PubMed ID: 18247402 [TBL] [Abstract][Full Text] [Related]
58. Conversion of androgen receptor signaling from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells involves a gain of function in c-Myc regulation. Vander Griend DJ; Litvinov IV; Isaacs JT Int J Biol Sci; 2014; 10(6):627-42. PubMed ID: 24948876 [TBL] [Abstract][Full Text] [Related]