These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 25332686)
61. Polymorphic CAG/CAA repeat length in the AIB1/SRC-3 gene and prostate cancer risk: a population-based case-control study. Hsing AW; Chokkalingam AP; Gao YT; Wu G; Wang X; Deng J; Cheng J; Sesterhenn IA; Mostofi FK; Chiang T; Chen YL; Stanczyk FZ; Chang C Cancer Epidemiol Biomarkers Prev; 2002 Apr; 11(4):337-41. PubMed ID: 11927493 [TBL] [Abstract][Full Text] [Related]
62. Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Kasper S; Sheppard PC; Yan Y; Pettigrew N; Borowsky AD; Prins GS; Dodd JG; Duckworth ML; Matusik RJ Lab Invest; 1998 Mar; 78(3):319-33. PubMed ID: 9520945 [TBL] [Abstract][Full Text] [Related]
63. The Master Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer. Bishop JL; Thaper D; Vahid S; Davies A; Ketola K; Kuruma H; Jama R; Nip KM; Angeles A; Johnson F; Wyatt AW; Fazli L; Gleave ME; Lin D; Rubin MA; Collins CC; Wang Y; Beltran H; Zoubeidi A Cancer Discov; 2017 Jan; 7(1):54-71. PubMed ID: 27784708 [TBL] [Abstract][Full Text] [Related]
64. Androgen receptor non-nuclear regulation of prostate cancer cell invasion mediated by Src and matriptase. Zarif JC; Lamb LE; Schulz VV; Nollet EA; Miranti CK Oncotarget; 2015 Mar; 6(9):6862-76. PubMed ID: 25730905 [TBL] [Abstract][Full Text] [Related]
65. Detection and organ-specific ablation of neuroendocrine cells by synaptophysin locus-based BAC cassette in transgenic mice. Cheng CY; Zhou Z; Nikitin AY PLoS One; 2013; 8(4):e60905. PubMed ID: 23630575 [TBL] [Abstract][Full Text] [Related]
66. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Jin RJ; Wang Y; Masumori N; Ishii K; Tsukamoto T; Shappell SB; Hayward SW; Kasper S; Matusik RJ Cancer Res; 2004 Aug; 64(15):5489-95. PubMed ID: 15289359 [TBL] [Abstract][Full Text] [Related]
67. Association of anti-inflammatory and antiangiogenic therapies negatively influences prostate cancer progression in TRAMP mice. Mateus PAM; Kido LA; Silva RS; Cagnon VHA; Montico F Prostate; 2019 Apr; 79(5):515-535. PubMed ID: 30585351 [TBL] [Abstract][Full Text] [Related]
68. Steroid Receptor Coactivator 1 Promotes Human Hepatocellular Carcinoma Progression by Enhancing Wnt/β-Catenin Signaling. Tong Z; Li M; Wang W; Mo P; Yu L; Liu K; Ren W; Li W; Zhang H; Xu J; Yu C J Biol Chem; 2015 Jul; 290(30):18596-608. PubMed ID: 26082485 [TBL] [Abstract][Full Text] [Related]
69. Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Kasper S; Sheppard PC; Yan Y; Pettigrew N; Borowsky AD; Prins GS; Dodd JG; Duckworth ML; Matusik RJ Lab Invest; 1998 Jun; 78(6):i-xv. PubMed ID: 9645768 [TBL] [Abstract][Full Text] [Related]
70. Aberrant activation of androgen receptor in a new neuropeptide-autocrine model of androgen-insensitive prostate cancer. Yang JC; Ok JH; Busby JE; Borowsky AD; Kung HJ; Evans CP Cancer Res; 2009 Jan; 69(1):151-60. PubMed ID: 19117998 [TBL] [Abstract][Full Text] [Related]
72. Context dependent regulatory patterns of the androgen receptor and androgen receptor target genes. Olsen JR; Azeem W; Hellem MR; Marvyin K; Hua Y; Qu Y; Li L; Lin B; Ke X; Øyan AM; Kalland K BMC Cancer; 2016 Jul; 16():377. PubMed ID: 27378372 [TBL] [Abstract][Full Text] [Related]
73. The aryl hydrocarbon receptor (AhR) inhibits vanadate-induced vascular endothelial growth factor (VEGF) production in TRAMP prostates. Fritz WA; Lin TM; Peterson RE Carcinogenesis; 2008 May; 29(5):1077-82. PubMed ID: 18359762 [TBL] [Abstract][Full Text] [Related]
74. Stromal-epithelial cell interactions and androgen receptor-coregulator recruitment is altered in the tissue microenvironment of prostate cancer. Cano P; Godoy A; Escamilla R; Dhir R; Onate SA Cancer Res; 2007 Jan; 67(2):511-9. PubMed ID: 17234758 [TBL] [Abstract][Full Text] [Related]
75. Foxm1 expression in prostate epithelial cells is essential for prostate carcinogenesis. Cai Y; Balli D; Ustiyan V; Fulford L; Hiller A; Misetic V; Zhang Y; Paluch AM; Waltz SE; Kasper S; Kalin TV J Biol Chem; 2013 Aug; 288(31):22527-41. PubMed ID: 23775078 [TBL] [Abstract][Full Text] [Related]
76. Src kinase potentiates androgen receptor transactivation function and invasion of androgen-independent prostate cancer C4-2 cells. Asim M; Siddiqui IA; Hafeez BB; Baniahmad A; Mukhtar H Oncogene; 2008 Jun; 27(25):3596-604. PubMed ID: 18223692 [TBL] [Abstract][Full Text] [Related]
77. Identification of SRC3/AIB1 as a preferred coactivator for hormone-activated androgen receptor. Zhou XE; Suino-Powell KM; Li J; He Y; Mackeigan JP; Melcher K; Yong EL; Xu HE J Biol Chem; 2010 Mar; 285(12):9161-71. PubMed ID: 20086010 [TBL] [Abstract][Full Text] [Related]
78. Steroid receptor coactivator 3 is a key modulator of regulatory T cell-mediated tumor evasion. Han SJ; Jain P; Gilad Y; Xia Y; Sung N; Park MJ; Dean AM; Lanz RB; Xu J; Dacso CC; Lonard DM; O'Malley BW Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2221707120. PubMed ID: 37253006 [TBL] [Abstract][Full Text] [Related]
79. The Ron receptor promotes prostate tumor growth in the TRAMP mouse model. Thobe MN; Gray JK; Gurusamy D; Paluch AM; Wagh PK; Pathrose P; Lentsch AB; Waltz SE Oncogene; 2011 Dec; 30(50):4990-8. PubMed ID: 21625214 [TBL] [Abstract][Full Text] [Related]
80. The cooperative function of nuclear receptor coactivator 1 (NCOA1) and NCOA3 in placental development and embryo survival. Chen X; Liu Z; Xu J Mol Endocrinol; 2010 Oct; 24(10):1917-34. PubMed ID: 20685850 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]