BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 25333059)

  • 1. The impact of "omic" and imaging technologies on assessing the host immune response to biodefence agents.
    Tree JA; Flick-Smith H; Elmore MJ; Rowland CA
    J Immunol Res; 2014; 2014():237043. PubMed ID: 25333059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.
    Dyer MD; Neff C; Dufford M; Rivera CG; Shattuck D; Bassaganya-Riera J; Murali TM; Sobral BW
    PLoS One; 2010 Aug; 5(8):e12089. PubMed ID: 20711500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of carbohydrate microarray technology for the detection of Burkholderia pseudomallei, Bacillus anthracis and Francisella tularensis antibodies.
    Parthasarathy N; Saksena R; Kováč P; Deshazer D; Peacock SJ; Wuthiekanun V; Heine HS; Friedlander AM; Cote CK; Welkos SL; Adamovicz JJ; Bavari S; Waag DM
    Carbohydr Res; 2008 Nov; 343(16):2783-8. PubMed ID: 18558401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deadly dance: the choreography of host-pathogen interactions, as revealed by single-cell technologies.
    Chattopadhyay PK; Roederer M; Bolton DL
    Nat Commun; 2018 Nov; 9(1):4638. PubMed ID: 30401874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innate Immune Recognition: Implications for the Interaction of
    Krocova Z; Macela A; Kubelkova K
    Front Cell Infect Microbiol; 2017; 7():446. PubMed ID: 29085810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for functional trans-complementation of intracellular Francisella tularensis.
    Steele S; Taft-Benz S; Kawula T
    PLoS One; 2014; 9(2):e88194. PubMed ID: 24505427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From the Outside-In: The Francisella tularensis Envelope and Virulence.
    Rowe HM; Huntley JF
    Front Cell Infect Microbiol; 2015; 5():94. PubMed ID: 26779445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses.
    Walters KA; Olsufka R; Kuestner RE; Cho JH; Li H; Zornetzer GA; Wang K; Skerrett SJ; Ozinsky A
    PLoS One; 2013; 8(5):e62412. PubMed ID: 23690939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.
    Turingan RS; Thomann HU; Zolotova A; Tan E; Selden RF
    PLoS One; 2013; 8(2):e56093. PubMed ID: 23418519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors.
    Wallqvist A; Memišević V; Zavaljevski N; Pieper R; Rajagopala SV; Kwon K; Yu C; Hoover TA; Reifman J
    BMC Genomics; 2015 Dec; 16():1106. PubMed ID: 26714771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Francisella tularensis regulates autophagy-related host cell signaling pathways.
    Cremer TJ; Amer A; Tridandapani S; Butchar JP
    Autophagy; 2009 Jan; 5(1):125-8. PubMed ID: 19029814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Francisella tularensis suppresses the proinflammatory response of endothelial cells via the endothelial protein C receptor.
    Bublitz DC; Noah CE; Benach JL; Furie MB
    J Immunol; 2010 Jul; 185(2):1124-31. PubMed ID: 20543103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.
    Dilley KA; Voorhies AA; Luthra P; Puri V; Stockwell TB; Lorenzi H; Basler CF; Shabman RS
    PLoS One; 2017; 12(6):e0178717. PubMed ID: 28636653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complement Receptor 3-Mediated Inhibition of Inflammasome Priming by Ras GTPase-Activating Protein During
    Hoang KV; Rajaram MVS; Curry HM; Gavrilin MA; Wewers MD; Schlesinger LS
    Front Immunol; 2018; 9():561. PubMed ID: 29632532
    [No Abstract]   [Full Text] [Related]  

  • 15. Reevaluating limits of detection of 12 lateral flow immunoassays for the detection of Yersinia pestis, Francisella tularensis, and Bacillus anthracis spores using viable risk group-3 strains.
    Ziegler I; Vollmar P; Knüpfer M; Braun P; Stoecker K
    J Appl Microbiol; 2021 Apr; 130(4):1173-1180. PubMed ID: 32970936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis.
    Geier H; Celli J
    Infect Immun; 2011 Jun; 79(6):2204-14. PubMed ID: 21422184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IKKβ in myeloid cells controls the host response to lethal and sublethal Francisella tularensis LVS infection.
    Samaniego S; Marcu KB
    PLoS One; 2013; 8(1):e54124. PubMed ID: 23349802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early cellular responses of germ-free and specific-pathogen-free mice to Francisella tularensis infection.
    Krocova Z; Plzakova L; Benuchova M; Macela A; Kubelkova K
    Microb Pathog; 2018 Oct; 123():314-322. PubMed ID: 30055244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entry of Francisella tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors.
    Plzakova L; Krocova Z; Kubelkova K; Macela A
    PLoS One; 2015; 10(7):e0132571. PubMed ID: 26161475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of a possible bioterrorism agent, Francisella sp., in a clinical specimen by use of next-generation direct DNA sequencing.
    Kuroda M; Sekizuka T; Shinya F; Takeuchi F; Kanno T; Sata T; Asano S
    J Clin Microbiol; 2012 May; 50(5):1810-2. PubMed ID: 22337979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.