BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25333070)

  • 1. Alport syndrome caused by a COL4A5 deletion and exonization of an adjacent AluY.
    Nozu K; Iijima K; Ohtsuka Y; Fu XJ; Kaito H; Nakanishi K; Vorechovsky I
    Mol Genet Genomic Med; 2014 Sep; 2(5):451-3. PubMed ID: 25333070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disease-causing mutations improving the branch site and polypyrimidine tract: pseudoexon activation of LINE-2 and antisense Alu lacking the poly(T)-tail.
    Meili D; Kralovicova J; Zagalak J; Bonafé L; Fiori L; Blau N; Thöny B; Vorechovsky I
    Hum Mutat; 2009 May; 30(5):823-31. PubMed ID: 19280650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-linked Alport syndrome caused by splicing mutations in COL4A5.
    Nozu K; Vorechovsky I; Kaito H; Fu XJ; Nakanishi K; Hashimura Y; Hashimoto F; Kamei K; Ito S; Kaku Y; Imasawa T; Ushijima K; Shimizu J; Makita Y; Konomoto T; Yoshikawa N; Iijima K
    Clin J Am Soc Nephrol; 2014 Nov; 9(11):1958-64. PubMed ID: 25183659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A birth of bipartite exon by intragenic deletion.
    Nozu K; Iijima K; Igarashi T; Yamada S; Kralovicova J; Nozu Y; Yamamura T; Minamikawa S; Morioka I; Ninchoji T; Kaito H; Nakanishi K; Vorechovsky I
    Mol Genet Genomic Med; 2017 May; 5(3):287-294. PubMed ID: 28546999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transposable elements in disease-associated cryptic exons.
    Vorechovsky I
    Hum Genet; 2010 Feb; 127(2):135-54. PubMed ID: 19823873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intronic antisense Alu elements have a negative splicing effect on the inclusion of adjacent downstream exons.
    Nakama M; Otsuka H; Ago Y; Sasai H; Abdelkreem E; Aoyama Y; Fukao T
    Gene; 2018 Jul; 664():84-89. PubMed ID: 29698748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reccurrent F8 Intronic Deletion Found in Mild Hemophilia A Causes Alu Exonization.
    Jourdy Y; Janin A; Fretigny M; Lienhart A; Négrier C; Bozon D; Vinciguerra C
    Am J Hum Genet; 2018 Feb; 102(2):199-206. PubMed ID: 29357978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exonization of transposed elements: A challenge and opportunity for evolution.
    Schmitz J; Brosius J
    Biochimie; 2011 Nov; 93(11):1928-34. PubMed ID: 21787833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wilson's disease caused by alternative splicing and Alu exonization due to a homozygous 3039-bp deletion spanning from intron 1 to exon 2 of the ATP7B gene.
    Mameli E; Lepori MB; Chiappe F; Ranucci G; Di Dato F; Iorio R; Loudianos G
    Gene; 2015 Sep; 569(2):276-9. PubMed ID: 26031236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exonization of AluYa5 in the human ACE gene requires mutations in both 3' and 5' splice sites and is facilitated by a conserved splicing enhancer.
    Lei H; Day IN; Vorechovský I
    Nucleic Acids Res; 2005; 33(12):3897-906. PubMed ID: 16027113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposon clusters as substrates for aberrant splice-site activation.
    Alvarez MEV; Chivers M; Borovska I; Monger S; Giannoulatou E; Kralovicova J; Vorechovsky I
    RNA Biol; 2021 Mar; 18(3):354-367. PubMed ID: 32965162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene.
    Amit M; Sela N; Keren H; Melamed Z; Muler I; Shomron N; Izraeli S; Ast G
    BMC Mol Biol; 2007 Nov; 8():109. PubMed ID: 18047649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimal conditions for exonization of intronic sequences: 5' splice site formation in alu exons.
    Sorek R; Lev-Maor G; Reznik M; Dagan T; Belinky F; Graur D; Ast G
    Mol Cell; 2004 Apr; 14(2):221-31. PubMed ID: 15099521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mutation (IVS8+0.6kbdelTC) creating a new donor splice site activates a cryptic exon in an Alu-element in intron 8 of the human beta-glucuronidase gene.
    Vervoort R; Gitzelmann R; Lissens W; Liebaers I
    Hum Genet; 1998 Dec; 103(6):686-93. PubMed ID: 9921904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alu exonization events reveal features required for precise recognition of exons by the splicing machinery.
    Schwartz S; Gal-Mark N; Kfir N; Oren R; Kim E; Ast G
    PLoS Comput Biol; 2009 Mar; 5(3):e1000300. PubMed ID: 19266014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifactorial interplay controls the splicing profile of Alu-derived exons.
    Ram O; Schwartz S; Ast G
    Mol Cell Biol; 2008 May; 28(10):3513-25. PubMed ID: 18332115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of splicing silencers and enhancers in sense Alus: a role for pseudoacceptors in splice site repression.
    Lei H; Vorechovsky I
    Mol Cell Biol; 2005 Aug; 25(16):6912-20. PubMed ID: 16055705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative splicing of Alu exons--two arms are better than one.
    Gal-Mark N; Schwartz S; Ast G
    Nucleic Acids Res; 2008 Apr; 36(6):2012-23. PubMed ID: 18276646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons.
    Lev-Maor G; Sorek R; Shomron N; Ast G
    Science; 2003 May; 300(5623):1288-91. PubMed ID: 12764196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual deep intronic mutations in the COL4A5 gene cause X linked Alport syndrome.
    King K; Flinter FA; Nihalani V; Green PM
    Hum Genet; 2002 Dec; 111(6):548-54. PubMed ID: 12436246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.