BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25333151)

  • 1. Instrument tracking via online learning in retinal microsurgery.
    Li Y; Chen C; Huang X; Huang J
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):464-71. PubMed ID: 25333151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRF-Based Model for Instrument Detection and Pose Estimation in Retinal Microsurgery.
    Alsheakhali M; Eslami A; Roodaki H; Navab N
    Comput Math Methods Med; 2016; 2016():1067509. PubMed ID: 27867418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven visual tracking in retinal microsurgery.
    Sznitman R; Ali K; Richa R; Taylor RH; Hager GD; Fual P
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):568-75. PubMed ID: 23286094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unified detection and tracking of instruments during retinal microsurgery.
    Sznitman R; Richa R; Taylor RH; Jedynak B; Hager GD
    IEEE Trans Pattern Anal Mach Intell; 2013 May; 35(5):1263-73. PubMed ID: 23520263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time localization of articulated surgical instruments in retinal microsurgery.
    Rieke N; Tan DJ; Amat di San Filippo C; Tombari F; Alsheakhali M; Belagiannis V; Eslami A; Navab N
    Med Image Anal; 2016 Dec; 34():82-100. PubMed ID: 27237604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive multispectral illumination for retinal microsurgery.
    Sznitman R; Rother D; Handa J; Gehlbach P; Hager GD; Taylor R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):465-72. PubMed ID: 20879433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative robot assistant for retinal microsurgery.
    Fleming I; Balicki M; Koo J; Iordachita I; Mitchell B; Handa J; Hager G; Taylor R
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):543-50. PubMed ID: 18982647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unified detection and tracking in retinal microsurgery.
    Sznitman R; Basu A; Richa R; Handa J; Gehlbach P; Taylor RH; Jedynak B; Hager GD
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):1-8. PubMed ID: 22003593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catheter tracking via online learning for dynamic motion compensation in transcatheter aortic valve implantation.
    Wang P; Zheng Y; John M; Comaniciu D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):17-24. PubMed ID: 23286027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast part-based classification for instrument detection in minimally invasive surgery.
    Sznitman R; Becker C; Fua P
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):692-9. PubMed ID: 25485440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time recognition of surgical tasks in eye surgery videos.
    Quellec G; Charrière K; Lamard M; Droueche Z; Roux C; Cochener B; Cazuguel G
    Med Image Anal; 2014 Apr; 18(3):579-90. PubMed ID: 24637155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 'The Microhand': a new concept of micro-forceps for ocular robotic surgery.
    Hubschman JP; Bourges JL; Choi W; Mozayan A; Tsirbas A; Kim CJ; Schwartz SD
    Eye (Lond); 2010 Feb; 24(2):364-7. PubMed ID: 19300461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery.
    Horise Y; He X; Gehlbach P; Taylor R; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():13-6. PubMed ID: 26736189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient migration of complex off-line computer vision software to real-time system implementation on generic computer hardware.
    Tyrrell JA; LaPre JM; Carothers CD; Roysam B; Stewart CV
    IEEE Trans Inf Technol Biomed; 2004 Jun; 8(2):142-53. PubMed ID: 15217259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust 3D visual tracking for robotic-assisted cardiac interventions.
    Richa R; Bó AP; Poignet P
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):267-74. PubMed ID: 20879240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Markerless monocular tracking system for guided external eye surgery.
    Monserrat C; Rupérez MJ; Alcañiz M; Mataix J
    Comput Med Imaging Graph; 2014 Dec; 38(8):785-92. PubMed ID: 25205012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context specific descriptors for tracking deforming tissue.
    Mountney P; Yang GZ
    Med Image Anal; 2012 Apr; 16(3):550-61. PubMed ID: 21641270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft tissue tracking for minimally invasive surgery: learning local deformation online.
    Mountney P; Yang GZ
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):364-72. PubMed ID: 18982626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An online learning approach to occlusion boundary detection.
    Jacobson N; Freund Y; Nguyen TQ
    IEEE Trans Image Process; 2012 Jan; 21(1):252-61. PubMed ID: 21788193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-supervised online metric learning with low rank constraint for scene categorization.
    Cong Y; Liu J; Yuan J; Luo J
    IEEE Trans Image Process; 2013 Aug; 22(8):3179-91. PubMed ID: 23629859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.